
Encapsulating and
Manipulating Component

Object Graphics (COGs) using
SVG

Alexander Macdonald

David Brailsford

Steven Bagley

Why we use PDF

● Word / Latex don't guarantee portability

● Different versions have different features

● Fonts not embedded

● PDF provides a high quality final form document
format

Why we wish we didn't use PDF

● People want editability

● Editability is hard without document structure

● Finest level of granularity in PDF is the page

The COG solution

● Graphical objects are encapsulated as COGs

● Each COG is self contained and can't affect other
COGs

● A COG-PDF document contains a sequence of COG
definitions and spacers to position them

The benefits of COGs

● Increase the granularity of PDF documents

● COGs can be moved, added or removed from
documents

● COGs can be programatically manipulated

Scalable Vector Graphics (SVG)

● W3C's XML based vector graphics language

<svg width="151" height="21">
 <rect fill="lightblue" width="150" height="20" stroke-width="2"

stroke="red"/>
 <text y="18" font-family="Arial" font-size="20">Hello World!</text>
</svg>

Scalable Vector Graphics (SVG)

● Rendering model similar to Postscript / PDF

● Lots of web-centric features

● Version 1.2 will add support for pagesets

SVG vs PDF

● A page in PDF is a single stream of commands

● Being XML based, SVG has a tree structure

● Groups allow for more structure

Extracting graphical content

<svg width="151" height="21">
 <g fill="lightblue">
 <g font-family="Arial">
 <rect width="150" height="20" stroke-width="2" stroke="red"/>
 <text y="18" fill="black" font-size="20">Hello World!</text>
 </g>
 </g>
</svg>

Extracting graphical content

● Inherited attributes must be flattened onto group

● Unspecified attributes must be specified on group

Extracting graphical content

● All rendering occurs on the canvas

● Bounds of the viewport define the viewable subset of
the canvas

● SVG allows nesting of documents

Extracting graphical content

● “ref” is the inverse of current transformation matrix

● <g> doesn't create a new viewport so can't be used for
encapsulation

● <svg> does create a new viewport

SVG COGs

● <defs> is used to store the COG definition

● <use> element can reference another part of the
document

SVG COGs
<svg width="200" height="100">
 <defs>
 <svg width="151" height="21" id="cog1">
 <rect fill="lightblue" width="150" height="20" stroke-width="2"

stroke="red"/>
 <text y="18" font-family="Arial" fill="black" font-size="20">Hello World!</

text>
</svg>
 </defs>

 <use xlink:href="#cog1" x="10" y="10"/>

 <use xlink:href="#cog1" x="20" y="30" transform="rotate(15)"/>
</svg>

Conclusion

● SVG makes it easier to retain structure, but does not
enforce it

● COGs provide a standardised way of encapsulating
graphical objects

