Block-Based Formatting with Encapsulated PDF

Philip N. Smith
Electronic Publishing Research Group,
Department of Computer Science,
University of Nottingham,
Nottingham NG7 2RD, UK
pns@cs.nott.ac.uk

Technical Report NOTTCS-TR-95-1, 2nd January, 1995

Abstract

Thisreport discussesthe definition of Encapsulated PDF (EPDF) and an EPDF block formatter called
Juggler. PDF (Portable Document Format) is the file format underlying Adobe Systems' Acrobat™
suite of products, and allows documents consisting of ‘printed’ pages to be distributed and viewed
electronically. An EPDF file stores blocks such as headings and paragraphs as distinct objectsin such a
way that they can be extracted and used in other documents. Juggler is an application which performs
this task, using a Document Description File (DDF) to determine the layout of the new document. Of
particular interest is Juggler’'s method of visual splitting of blocks across columns and pages.

After describing EPDF and Juggler in their current states, the report moves on to discuss further
extensions which could be made, including document structure representation and inter-block linking.
Brief mention is made of relationships between EPDF and the standards SGML and ODA.

Contents

1 Introduction 3
2 EPDF File Structure 3
21 EPDFBIOCKS. e 3
2.2 BuildingaPageof Blocks 4
23 RepeatedBlocks 4

3 Pagelayout 4
31 Visud Splitting. 4
3.2 Document DescriptionFile(DDF) 6

4 Using Juggler — A Worked Example 6
41 TheDDF e 6
42 RunningJduggler 8

5 Further Discussion 12
5.1 Resource Renaming andthePageObjects 12

52 BlockReuse 15
5.3 UniquelDsand DistributedDocumentso 15
54 StructureHierarchies. 15
5.5 Correctness Checking with the Spacing Dictionary 16

56 DDFImprovements e 16
56.1 HeadersandFooters 16

5.6.2 Jdudtification 16

56.3 RepeatingContent 16

564 ExpandingFrames 16

5.7 Non-StrictBoundingBoxes 16
58 ReformattingBlocks 17
59 Textua References e 17
5.10 Inter-Block Links 17

6 Generating EPDF 18
7 Final Remarks 18
References 18

A mai ndoc. pdf 19
B anot her doc. pdf 21

The main text of this document was produced using IATEX. Figures were generated by hand-written PostScript. Pages10and 11
and also those for the appendices were left blank before conversion to PostScript with dvips and PDF with Acrobat Distiller. The
blank pageswere then replaced with the correct pagesof PDF using Acrobat, and the complete document was printed to file to produce

the final PostScript. E

Production Note
All the links and bookmarks were generated automatically from the LaTeX using software produced by the CAJUN team at Nottingham.
email circus@cs.nott.ac.uk

1 Introduction

Juggler is an application which can be used to generate PDF[3] documents from ‘Encapsulated PDF
(EPDF) blocksin other PDF documents. The theory behind EPDF and itsuseiscurrently further devel oped
than the Juggler application itself. This report outlinesthe general principles of using EPDF, illustratesthe
use of Juggler with a simple example and then discusses further ideas and possible future devel opments.
A working knowledge of PDF file structure and syntax is assumed. For the sake of readability, PostScript
equivalents are mentioned in place of certain PDF operators.

2 EPDF File Structure

An EPDF file, just like an ordinary PDF file contains a number of pages, each with itsimageable contents
referenced under its Contents key. The main difference at this levd, is that whereas a page is usually
a reference to one contents stream, EPDF makes use of PDF's ability to hold an array of references to
contents streams. Each imageable stream is an EPDF block, and references to these are interleaved with
references to positioning objects which place them correctly on the page. Althoughthey are al storedina
single array, each pairing of positioning object with imageable block can be regarded as a leaf of the PDF
page tree.

2.1 EPDF Blocks

The EPDF block isthe basis of Juggler’sfunctionality. It isessentially aContents stream with afew extra
keys. Instead of the stream imaging a whole page, however, it just shows something like a paragraph,
section heading or diagram. Below is an example of an EPDF block.

11 0 obj

<<

/ Type [/ EPDFBI ock

/ Subt ype /sectionhead

/ Boundi ngBox [90 720 184 732]

/ Resour ces <<
/Font << /F2 10 0 R >>
/ProcSet [/PDF /Text]

>>

/Length 12 0 R

>>

stream

BT

0 Tr

0g

[F2 1 Tf

14 0 0 14 90 722.95 Tm

0 Tc

0 Tw

[(1)-994. 3(Backgr) 17. 1(ound)] TJ

ET

endstream

endobj

12 0 obj

89

endobj

Type is self-explanatory. Subtype’s value can be any vaid name. | have not set out a ‘ standard’
set of subtypes, and | will mention in this report strong arguments for not doing so. The Resources are

identical to those that would appear in the Page object if this were the only contents stream, with the
possible exception that each top-level resource array or dictionary must be direct (e.g. /ProcSet20R is
not allowed). Juggler uses the bounding box of the block to set up atrandation to place it correctly on the
page, just as a DTP application places Encapsul ated PostScript[2].

2.2 Building a Page of Blocks

Juggler performs the following steps when adding a block to a page (though not in this order, and not
necessarily atomicaly):

e Copy theblock tothenew file, addingitsresourcestothosed ready required by thepage. Thisrequires
renumbering of the object, copying and renumbering of any objects it references, and sometimes
renaming of resources to avoid name clashes. This problem is due to the fact that resource names
must be declared in the Page rather than locally to each Contents stream, and is discussed further
insection 5.1.

e Work out where the block needs to appear on the page and create a new object to positionit. This
consists of a grestore to restore to the state before the last positioner, a gsave and a translate to
position the block. Thus, each trandation isrelative to the origin before the first block was imaged.
Thisisusualy the lower left corner of aframe (see later sections).

e Add references to the positioner and block to the Contents array.

Note that thisis a simplification of the process. Variations on this are mentioned in later sections.

2.3 Repeated Blocks

If a block such as alogo isto be imaged on more than one page, or indeed more than once on the same
page, it need appear in thefile only once. It issimply referenced more than once, each time preceded by a
suitable positioner. Not only does this save filespace, but it is aso an important part of the block splitting
method described in the next section.

3 Pagelayout

Apart from the source PDF files, another input to Juggler is a kind of style file, here referred to as a
Document Description File (DDF). This states which blocksto use and how to lay them out. It includesa
description of layout frames, inter-block spacing and how to split blocks between frames.

3.1 Visual Splitting

Just as a DTP application is not expected to parse EPS, Juggler does not attempt to parse block streams to
understand where lines of text are and where to split the block. Instead, the DDF states in a generic way
where a block of a given type may be visually split.

As an example of the process, consider breaking a paragraph (say /Type/para) at the end of a column.
Juggler finds out from the DDF the best split point, and then, as well as doing atranslate to get the block
in the correct place, aso does a crop so that anything below the split point isinvisible. At thetop of the
next column, the other half of theblock will be cropped out. Thefact that the document containstwo views
of the same logica block is reflected in the resulting PDF file; two crop boxes are set up, each followed
by a reference to the same EPDF block. This compares favourably with the Open Document Architecture
(ODA)[4] in which a content portion would have to be split into two parts in the formatting process.

Splits is a subdictionary of a DDF. Its key—value pairs are block types and arrays from which split
points can be calculated. For example

10 [Thisis an example paragraph
10 used to illustrate three

10 nterpretations of the same

10 [ine spacing.

N N NN

traditional

Thisis an example paragraph *©

10 Thisis an example paragrap 12

10 used to illustrate three
10 interpretations of the same
10 |ine spacing.

2 used to illustrate three 10

* nterpretations of the same.

line spacing. 10

12

N N NN

transitional linespace

Figure 1. Three models of typeset line placement

12 Thisis an example paragraph
12 used to illustrate three

12 interpretations of the same
12 [ine spacing.

Figure 2. Bounding box position used with Juggler

/Splits <<
/para [24 12 36]
>>

saysthat aparagraph can be split at any 12pt interva between 24ptsfrom thetop and 36ptsfrom the bottom.
Thiswould be appropriatefor a10/12pt paragraph, and has the side effect of avoiding widowsand orphans.
If no valid split point can be found (e.g. if the paragraph has only three lines) or none is specified (items
such as diagrams and tables are usually non-splittable), the block is not split.

All this means that bounding boxes must be calculated very carefully. Figure 1 illustrates how the
calculated bounding box of a paragraph might vary according to the typesetting model being employed.
The traditional model iswhere 10pt sortsare made up into linesand 2ptsof lead areinserted between them.
The transitional model is a Typel-ised version where extra leading is thought of as being directly below
thetext baseline. In the linespace model linesare simply set with baselines 12ptsapart, and actua text size
isof littleimportance.

A bounding box cal culated using just theinformation in the linespace model would not include descen-
ders, so splitting the block at simple 12pt intervals would chop them off. The transitional model would
work inthiscase, but afont with descenders longer than the leading would still get chopped. The bounding
boxes of the blocks used in the example in section 4 were calculated by taking the bounding box of the
baselines, subtracting a suitable amount, n, from the bottom and adding 12 — n to the top. Thisresultsin
a box a multiple of 12pts high which can be split a any 12pt interval without chopping off ascenders or
descenders (see figure 2).

3.2 Document Description File (DDF)

A DDF contains two mgjor parts: a dictionary containing layout information and a list of the blocks
required. Juggler creates pages as necessary and adds blocks to the current page in the order in which they
appear in the DDF. It is planned to identify blocks by some kind of unique naming scheme (UniquelD
would be another key in the block), but at the moment the names in the block list are of the form /nm:m
where nisthe ‘file number’ and m is the object number within that file. The rest of the style file is best
described with the aid of an example.

4 Using Juggler — A Worked Example
4.1 TheDDF

The DDF below describes a simple two-column document. Blocks are taken from two files, called
mai ndoc. pdf and anot her doc. pdf, in subdirectory pdf . There are blocks of types titleblock,
head, subhead and para.

<<
[Files [(pdf/maindoc.pdf) (pdf/anotherdoc. pdf)]

/ Medi aBox [0 O 570 450]

/ Start Ri ght Page [
/ FrameA / None 80 50 290 400 createfrane
/ FrameB / None 320 50 530 400 createfranme
/ FrameA setcurrentfranme

]

[Start Left Page [
/ FrameA / None 40 50 250 400 createfrane
/ FrameB / None 280 50 490 400 createfranme
/ FrameA setcurrentfranme

]

/ AddBl ock <<
/ DEFAULT [/ CURRENT put bl ock]
>>

/ EndFranme <<
[FrameA [/FraneB setcurrentfrane]
/[FraneB [showpage]

>>

/ Spaci ng <<
/titleblock <<
/head 21.5 %qgets back on to 12pt grid
>>
[para <<
/para O
[head 24
/ subhead 24
>>

/ subhead <<
/para 12

>>

/ head <<
/para 12
/ subhead 12
/ head 12

>>

>>

/Splits <<
[para [24 12 24]
>>
>>

/1.7 /1:11 /1:14 /2:8
/1:17 /1:20 /1:24 /1:28
/1:32 /2:8 /1:35 /1:38
/1:41 /1:44 | 1:48

The syntax of the main dictionary is the same as for PDF dictionaries. The only quirk is that some
arrays, such as the Start. . .Page arrays, are executable (procedures), while others, such as MediaBox
are just PDF-style arrays containing no operators. All the top-level names are standard, and some entries
(Files, StartRightPage, AddBlock and EndFrame) must be present. Arithmetic operatorsadd, sub, mul
and div may be used in any procedure, as well as standard stack operators such as exch, dup, pop, copy
and roll. Other operators are defined for particular procedures.

MediaBox Thisplain array iscopied over into the root Pages object in the new file. If it isnot specified,
adefault of [00595842] (A4 size) is used.

StartRightPage Thisis a procedure to be executed when a right-hand (usually odd-numbered) page is
begun. The only permitted non-standard operators are createframe and setcurrentframe. create-
frame takes aframe name and four numbersfor abounding box asitsparameters. TheNone nameis
currently ignored, but may have significance in alater version (see section 5.6.4). setcurrentframe
setsthe frame to be regarded as the current frame. Blocks may be added to aframe with the reserved
name CURRENT, and the current frame may be changed. This permits flow from one frame to
another. The StartRightPage procedure must create at least one frame, and must set the current
frame.

StartLeftPage The semantics of thisprocedure are identical to StartRightPage, except that it defines the
frame layout for left-hand (even-numbered) pages. If omitted, all pages use the StartRightPage
procedure.

AddBlock Each key in the AddBlock dictionary is a block type name (e.g. /para) or the reserved name
DEFAULT. Each value is a procedure which is executed when a block of the key type has to be
added to the page. At the time of writing, the only alowable operator is putblock. This puts the
block into the named frame. If thereis no entry for a particular block type, the DEFAULT entry is
used.

EndFrame Each key inthe EndFrame dictionary isaframe name. The procedure associated with aframe
name is executed as soon as that frame becomes full. The procedures may set the current frame or
execute showpage which causes the page to be added to the output file and a new page to be started
if necessary.

Spacing The Spacing dictionary specifies the amount of extra space which should be added between two
blocks. If ablock of typea isto be followed by ablock of typeb the extraspace isgiven by thevaue

associated with key b in the subdictionary associated with key a. Values are specified in points. In
the example DDF, if apara isto be followed by ahead, 24pts of extras space must be |eft between
them. If ahead isto be followed by a para, 12pts must be left. If no extra space is specified for a
particular pairing, no extra spaceisleft.

Splits This specifies the split points (see section 3.1) for each block type. If none is specified, the block
will not be split.

After the dictionary comes thelist of block identifiers which was described in section 3.2. Notethat in
thisexample, nearly al theblockscomefrommai ndoc. pdf . However, ablock fromanot her doc. pdf
isinserted twice into the new document.

4.2 RunningJuggler

Juggler isa stand-alone, command-line program written in C++. It has been compiled on a Sun4, and takes
as its arguments the name of the DDF and the name of the PDF file to be produced. The two PDF input
files have been included in this document in appendices A and B. A transcript of the juggling processis
shown below, and the resulting file is shown on pages 10 and 11.

pns@uil | > juggl er exanpl e. ddf exanpl e. pdf

- - - CREATI NG PACE 1---
Splitting bl ock

VRI TI NG PAGE 1

Witing frane 1
WiteBlock(), objid 7 0
WiteBlock(), objid 11 0
WiteBlock(), objid 14 0
WiteBl ock(), objid 8 0
Renames required: <<

[F2 [JugF2

>>

Witing frane 2
WiteBlock(), objid 17 0
WiteBl ock(), objid 20 0
WiteBlock(), objid 24 0
WiteBl ock(), objid 28 0
WiteBl ock(), objid 32 0
Renames required: <<

/[F1 /JuglF1

>>

- - - CREATI NG PACE 2- - -
Splitting bl ock

VRI TI NG PAGE 2

Witing frane 1

WiteBlock(), objid 32 0
WiteBl ock(), objid 8 0
WiteBl ock(), objid 35 0
WiteBl ock(), objid 38 0

Witing frane 2

WiteBl ock(), objid 38 0
WiteBlock(), objid 41 0
WiteBlock(), objid 44 0
WiteBl ock(), objid 48 0

pns@uil | >

Each Wi t eBl ock() message correspondsto the placing of ablock on the page. Theobj i d isthe
object identifier from the original file. ThefirsttimeaW it eBl ock() message appears for ablock, that
block is copied to the new file. Each subsequent timeit is merely referenced from the Contents array in
the Page object. The transcript shows that object 32 is split between page 1 and page 2 and that object 38
issplit between frame 1 and frame 2 on page 2.

The Renames requi red: message appears when the resources required by a block have to be
renamed in order to avoid name clashes with blocks aready added to the page. This process is described
in more detail in section 5.1.

Second Year Ph.D. Report
Juggler: State of the Act

Philip N. Smith
Autumn 1994

1 Background

In my first year report | reviewed various meth-
ods of document representation and discussed the
possible use of Adobe's Portable Document Format
(PDF) as a common format for revisable multiple-
source documents. Much of the discussion was of
how it might be possibleto enable block level editing
of PDF documents which contained no block infor-
mation whatsoever. Whilethisisaworthwhile goal,
| have come to the conclusion that a far more use-
ful and useable system could be based on a format
including a little more information. This report is
a working document discussing technical details as
well as general principles, and assumes some knowl-
edge of PDF and Acrobat.

Thisisaparagraph taken from another EPDF
file. I've set it in bold type just to make it easier
tofind, but it isof type/parajust likeall the other
paragraphsin thisdocument.

2 Introducing Juggler

Jugglerisan embryonic system for laying out * En-
capsulated PDF (EPDF) blocks onto pages. An
EPDF block (a heading or paragraph, for example)
isin the same form as a PDF content stream, except
for the addition of a few extra keys. The working
definition of EPDF is such that an EPDF fileis also
a valid PDF file. However, the extra information
allows Juggler to extract individual blocks from any
number of files and to lay them out onto new pages.
At all stages, the design of EPDF attempts to be
‘Acrobat-friendly’ i.e. it should be possible to gen-
erate EPDF without too many alterationsto existing
software such as Distiller.

In general terms, an EPDF file consists of alarge
set of blocks, and a set of pages which specify views
of those blocks in particular locations. If a block
must be shown on several pages or several timeson
the same page, it need appear in the file only once;
itisjust viewed several times.

2.1 A pointless subsection

To implement thisin a valid PDF file, heavy use
is made of the fact that PDF allows the contents of a
page (what you see) to be described by any number
of streams of page description commands. Though

in most PDF documents the value of the /Contents
key is areference to a single stream of commands,
it may also be an array of references. In EPDF each
page contains such an array. The referenced ob-
jects are aternately views specifiers and imageable
blocks. The view specifiers usually contain coordi-
nate transformation commands to position the next
block correctly on the page.

Thisisaparagraph taken from another EPDF
file. I'veset it in bold type just to make it easier
tofind, but it isof type/parajust likeall the other
paragraphsin thisdocument.

Once created, ablock never changes. Itisgivena
unique identifier and can be copied into other files.
Even when a block has to be split between columns
or pages, Juggler maintainstheintegrity of theblock.
Two distinct views of the same block are defined us-
ing the clipping path operators. In one view the
lower portion becomes invisible, and in the other
the upper portion is clipped out. This means that
the logical block structure of the document is main-
tained independently of the particular layout. This
compares favourably with ODA in which a logical
block must contain two distinct content portionsif it
isto be split between two layout blocks.

Hypertext links are an important feature of PDF
but link ssmply from one area of a page to ancther.
In EPDF a block can contain links to other blocks,
and these can be converted to ordinary PDF linksfor

a specific layout. Interestingly, this creates exactly
the same kind of forward referencing problems for
Juggler as have been found in work on the CAJUN
project: if a block has a link to another block, that
link can’t be made until it is known whether and
where the target block appears.

3 Conclusion

Althoughthe Juggler applicationisstill at an early
stage of development, it is easy to see that use of
EPDF gives rise to many possibilities. | hope to
investigate some of these possihilities over the next
year, through further development of Juggler.

There will come a point, however, when the main
benefit of using PDF — the fact that almost any-
one can produce it, using any application — is out-
weighed by the extra work involved in using it for
purposes other than those for which it was originally
intended: purposes for which other systems have
aready been developed.

5 Further Discussion

This section discusses varioustopicsrelating to Juggler asit isnow and as it might be. | have attempted to
arrange them into some kind of order, but opinions may differ asto what kind of order thisis.

5.1 Resource Renaming and the Page Objects

PDF has been designed to make display and browsing of documents as efficient as possible, but generation
is not quite so simple. When moving an object from one file to another it has to be given a new number
before writing. All objectsto which it refers must aso be renumbered and copied.

The greatest problem for Juggler, however, istherea likelihood of resource name clashes: the named
resources reguired by each block on the page must be listed in the Page object’s Resources dictionary.
A block from one file might refer to Times Roman as F1 while ablock from another might use F1 to refer
to Helvetica. If thetwo are to be placed on the same page by Juggler, a new name needs to be alocated in
place of one of the F1s, and every occurrence of F1 in the block’s stream must be changed.

In the example in section 4 the block from anot her doc. pdf hasits resource name F2 changed to
JugF2 to avoid aname clash with an earlier block (see transcript on page 8). Thisistheblock asit appears
inthe original file:

8 0 obj

<< /Length 9 0 R /Type /EPDFBI ock / Subtype /para /Boundi ngBox [89.99
98 684.2 296.393 732.2]

/ Resources << /Font << /F2 6 0O R/F1 7 0 R >> /ProcSet [/PDF /Text]
>>
>>

stream

BT

0 Tr

0g

[F2 1 Tf

10 0 0 10 100.08 722.95 Tm

0 Tc

0 Tw

[(This)-216(is)-240(a)-216(par agraph)-264(taken)-240(fr)24(om -240(an
ot her) - 240(EPDF)] TJ

-1.008 -1.2 Td

[(\ 256l e.)-480(1've)-288(set)-288(it)-264(in)-288(bold)-264(type)-288
(just)-264(to)-288(nmake)-288(it)-264(easier)]Td

0 -1.2 Td
[(to)-192(\256nd,)-240(but)-192(it)-192(is)-192(of)-192(type)]TJ

/F1 1 Tf

9.552 0 Td

(/ para)T]

[F2 1 Tf

2.472 0 Td

[(just)-216(1ike)-192(all)-168(the)-216(other)]TJ

-12.024 -1.2 Td

[(paragraphs)-264(in)-240(this)-240(docunent.)]TJ

ET

endst r eam

endobj

12

and hereit is after being copied toexanpl e. pdf :

22 0 obj

<<

/Length 25 0 R

/ Type [/ EPDFBI ock

/ Subt ype / para

/ Boundi ngBox [89.9998 684.2 296.393 732.2]

/ Resour ces <<

/ Font <<

/JugF2 23 0 R

/F1 24 0 R

>>

/ProcSet [/PDF /Text]

>>

>>

stream

BT

0 Tr

0g

[JugF2 1 Tf

10 0 0 10 100.08 722.95 Tm

0 Tc

0 Tw

[(This) -216 (is) -240 (a) -216 (paragraph) -264 (taken) -240 (fr)
24 (om -240 (another) -240 (EPDF) 1 TJ

-1.008 -1.2 Td

[(\256le.) -480 (1've) -288 (set) -288 (it) -264 (in) -288 (bold)
-264 (type) -288 (just) -264 (to) -288 (make) -288 (it) -264 (easier)
] T

0 -1.2 Td

[(to) -192 (\256nd,) -240 (but) -192 (it) -192 (is) -192 (of) -192
(type)] TJ

/F1 1 Tf

9.552 0 Td

(/para) Tj

[JugF2 1 Tf

2.472 0 Td

[(just) -216 (like) -192 (all) -168 (the) -216 (other)] TJ
-12.024 -1.2 Td

[(paragraphs) -264 (in) -240 (this) -240 (docunent.)] TJ
ET

endst r eam

endobj

Notice how the whole stream is completely re-written; Juggler reads it atoken at a time and changes
names as necessary. Note aso that this processis performed once only per block. The renaming isdone as
the block iswritten to the new file for thefirst time. It is possiblethat if the block is asked for again, later
in the document, further renamings might be necessary. However, by that stage the block will aready have
been written out. At thetime of writing, if such a combination of events occurs, Juggler hats, complaining
that it can’'t perform the necessary renamings. It would, however, be quite possibleto write a second copy
of the block, with different names. Thiswould at least result in a complete document, even if it wouldn’t

be as neat as one containing just one copy of each required block.

A final point about resource renaming is that there is no need to worry about changing the actual
resource. For example, the font in object 60 in the origina file contains /Name/F2. Although the PDF

13

Reference Manual states that this name should match the name in the Page resources, it serves no useful
purposeand isignored by al Acrobat PDF viewers. Thismeans that the object can be copied throughto the
new file without changing that entry. More importantly, it also means that two blocks can refer to the same
resource by different names. This often happens when two paragraphs from the same source document are
put into a new document, but one of them has to have a resource name changed. In such a case, the Page
resources will contain both names, each associated with the same resource object.

For the sake of completeness, here are the two Page objectsfrom exanpl e. pdf :

52 0 obj

<<

| Type / Page

/Parent 3 0 R
/[Contents [4 0 R6 0
22 0 R26 0 R 27
44 0 R 46 0 R 48
/ Resour ces <<
/ProcSet [/PDF /Text]
[Font <<

/FA 9 0 R

/F2 14 0 R

/JugF2 23 0 R

/F1 24 0 R

/F3 40 0 R

/JuglFl 49 0 R

>>

>>

>>

endobj

85 0 obj

<<

/| Type / Page

/Parent 3 0 R
/Contents [53 0 R 55
65 0 R67 0 R68 0 R 7
82 0 R84 0 R]

/ Resour ces <<

/ProcSet [/PDF /Text]
/ Font <<

/FA 9 0 R

/JuglFl 49 0 R

/JugF2 23 0 R

/F1 24 0 R

/F2 14 0 R

>>

>>

>>

endobj

2

22 0 3
R 74

0O R48 0 R57 OR R59 0R61 0R630R
OO0OR650R720 OR76 0O R78 0 R80 0R

Object 22 istheparagraph fromanot her doc. pdf and appears on both pages. Object 48isthe paragraph
split from page 1 to page 2 and so appears once in each Contents array. Object 65 is the paragraph split
between frames on page 2 and so is referenced twice in the same array. Font F3 which appears only on
page 1is Times Italic, used for the word views halfway down the second column.

14

5.2 Block Reuse

Having ‘juggled’ some files into a new file, the blocks in that new file can be made available to another
juggler processin just the sameway astheoriginals. To al intentsand purposes, ablock isunchanged when
moved from onefileto another. The only differences are object numbers and possibly resource names, but
these have no effect on the appearance of the block. Block reuse would be smpler if each had a unique
identifier. Then ablock would be identified in the same way in al files, and the author of a DDF would not
have to worry about finding the object number of the block in the particular file from which it was to be
extracted.

5.3 UniquelDsand Distributed Documents

A combination of origind file ID (PDF-1.1) and object humber in that file could be used as an amost
unique, if not particularly attractive, identifier.

As mentioned above, giving blocks unique identifiers would be a mgjor step forward in easing the
creation of DDFs. Better still would be to have a separate ‘block server’ application or module to search
available files for a given block. There would then be no need for a Files entry in the DDF and blocks
would be supplied by the block server from the most convenient source. With the use of suitable protocols,
blocks could even be acquired from remote sitesif they were unavailablelocally.

If this were implemented carefully, the DDF could be regarded as the document and the creation of a
complete PDF file ameans of display. People could exchange DDFsrather than PDFs knowing that as long
as the EPDF blocks existed somewhere, the document could be displayed.

5.4 StructureHierarchies

Although each block in an EPDF file may be regarded as a structural el ement, thereis no statement of the
way in which these elements are arranged into a structured document. We have PostScript’s descriptive
power of appearance and a ssmple DTP application’s notion of element types, but nothing like the ability
of SGML[1] to describe the structure of a document. Discussion of structured documents is here confined
to hierarchical, tree structures such as this report.

If we add an optiona Kids entry to the EPDFBlock specification, we have a basis for defining tree
structures. Consider the common structure consisting of a section containing subsections containing
paragraphs. Rather than having block types sectionhead, subhead and para, we can cal them section,
subsection and para. The Kids entry in a section would be an ordered array of unique identifiers for
its subsections. What we might call the imageable part of the block would be the section heading, and
the layout rules would be the same as before, but the section would in some way ‘own’ its subsections.
Similarly, asubsection’s kids would be paras.

The list of blocks in the DDF could be greatly reduced by allowing preorder traversal of such trees.
Asking for asection (as opposed to a sectionhead) would (or at least could, if requested) result in al the
blocks of the section being added to the new document, in the correct order.

Variousissues need to be addressed. For instance, how easy would it be for Juggler to build these trees
from alist of blocks? Some notation for the generic document structure would be required. The process
would either be two-pass (one pass to work out the structure and the second to write out the blocks with
their Kids entries) or would require many blocksto be held in memory.

Further, if a section is extracted from a document and another subsection is added, which, if any, of
the unique identifiers should be changed? Though its imageable part remains the same, the structure of
the section has changed. Therefore it should be given a new unique identifier. I1t’s original subsections,
however, have not changed and should therefore keep their existing identifiers.

Though clearly not as powerful a representation method as generalised markup languages such as
SGML, the use of Kids entrieswould at least alow hierarchical document structuresto be simply stored in
aPDFfile.

15

5.5 Correctness Checking with the Spacing Dictionary

As aforementioned, if there is no entry in the Spacing dictionary for a particular ordered pair of blocks,
no extra space is inserted between them. However, this dictionary, which forms part of the description of
what the document looks like, can aso be used to help check that it is structurally correct. For instance,
in the example in section 4 no spacing is specified for the pair subheadhead. If this combination was
encountered, Juggler could give awarning that there might be an inconsi stency.

Though limited in power, thisform of correctness checking requires no additional data. In particular,
no generic structure definition is needed.

5.6 DDF Improvements

DDF functionality is at the moment fairly limited, particularly in its ability to lay out occasional material
such as footnotes. This section mentions a few possible improvements.

5.6.1 Headersand Footers

While headers and footers could be defined block types and be placed in specia frames, there is little
point in doing this as the content, and number of header and footer lines depends entirely on the particular
pagination of the document being generated. It should be Juggler’sjob to generate headers and footers
from data supplied in the DDF

5.6.2 Justification

It would be nice to be able to right-justify or centre anarrower block within aframe. For example, thetitle
block in the example on page 10 ought to be centred. At the moment, all blocks are left-justified within the
frame.

5.6.3 Repeating Content

It would a so be niceto be ableto specify ablock, such asalogo or textured background, that should appear
on every page. This could perhaps be defined in the Start. . . Page procedures.

5.6.4 Expanding Frames

Expanding frames are one way of handling occasional materia such as footnotes. An expanding frame
would be created with zero height to begin with, but one argument to createframe (which is currently
always None) would givethedirection (/Up or /Down) in which the frame should expand. The AddBlock
procedure for footnotes woul d add the footnoteto the expanding frame causing it to expand, and would call
another procedure to adjust existing frames. If adjusting the other frames would cause blocks to require
repositioning, al the page’ sblockswould haveto berelaid, thistime starting with theframes at their revised
sizes.

With careful thought, this additiona functionality would alow quite complex frame layouts. Other
possibilitiesare conditionally-created frames, and even the ability to switch between completely different
frame sets.

5.7 Non-Strict Bounding Boxes

Bounding boxes in EPDF need not be strict. They are used to position blocks and for visual splitting.
The most important thing is that they are defined consistently so that all blocks of a particular type can be
treated in the same way. Inthe earlier example, paragraphs are set 10/12pt and the bounding box isaways
amultiple of 12 pointshigh. It aways extends the same distance bel ow the bottom baseline and 12 points
less that distance above the top basdline.

What might not be so obviousisthat the bounding boxes of headings and subheadings are also 12 points
high. In the case of section headings, this probably means that the larger text extends above the top of the

16

! ! yphenated paragraph. It is used to demonstrate h-

ting of one section heading and this very badly h-| :aselines line up, even with the heading.

Figure 3. Laying out blocksto a grid using non-strict bounding boxes

box, but this doesn’t matter as section headings are never cropped. The advantage is that everything can
be laid out on a 12 point grid, ensuring that the linesin the two columns do line up. Thisisillustratedin
figure3

5.8 Reformatting Blocks

Althoughjuggler alowsany size of block to be added to any size of frame, thereis currently nothingit can
do about blocks which aren’t the same width as the others. It could be argued that in EPDF a paragraph
with a 10 pica measure is a different kind of block from one with a 30 pica measure. However, since the
two are so similar in other respects, the ability to reformat a block which is known to be a paragraph of
some kind, would add greatly to Juggler’s usefulness. One could, of course, extract the text using the text
extraction tool in Acrobat and regenerate the paragraph with an EPDF-aware application, but it would be
better to have this done automatically as part of Juggler’slayout process.

This raises the philosphical question of whether the block should retain its origina unique identifier
after reformatting. If reformatting really istransparent, then it makes no difference to Juggler what measure
the block has, and so measure is not adistinguishing feature. It would then be anal ogousto resource names
— it doesn’'t matter what the names are, so long as the resources are the same in al other respects.

On the other hand, the rest of Juggler deals only with bounding boxes and split points which can be
applied just as well to pictures asto paragraphs. If the size of a picture or a paragraph changes thenitisa
different block. Also, reformattingisunlikely to betransparent because of problems caused by hyphenation.

5.9 Textual References

One mgjor deficiency in the Juggle—EPDF system is its inability to resolve textual references such as
‘see section 6© commonly found in printed documents. There is nothingin a block to say that it contains
such a reference, let aone where the text is or to what it refers. Adding such information would not be
straightforward and would not fit nicely with the otherwise wholly graphical nature of the formatting. If a
reference had to be changed (for example to ‘ see section 10’) a paragraph might require reformatting.

Though in strictly-planned documents where al sectional numbers are known in advance, this might
not be too much of a problem, such textual references should be avoided if blocks are to be reused in other
contexts. More use should be made of hypertext links, and in particul ar, inter-block links.

5.10 Inter-Block Links

Thelast topicinthis pot-pourri of asection isthat of hyper-linksbetween blocks. Linksin an ordinary PDF
document link from an area of a pageto aview of apage. In EPDF they should really be defined aslinking
from an area of a block to another block. When a block containing alink is put into a new document, an
equivaent PDF-style link should be added to the Page resources.

The EPDF form of alink would have a Rect key like PDF's, specifying the location of the link box in
the same coordinate system as the block’ sbounding box. The Dest entry would just be the uniqueidentifier
of the destination block. This datawould have to be transformed into a new Link object for the new PDF
file. The problems of forward references are similar here to those experienced on the CAJUN project[5],
with the added complication that the destination block might not even appear in the new file.

17

6 Generating EPDF

Clearly someinformation required in EPDF cannot be written by current versions of Distiller or PDFWiriter
and so has to be added afterwards using a separate program. The only remaining problem is to generate
separate objects for each block. Thisisaccomplished by placing each on a separate page.

The blocks used in the example in section 4 were generated using IATEX with a few macros revised
to begin sections and paragraphs on separate pages, and to pass through the block types. An addition to
the PostScript prolog which redefines show to keep track of baseline positions and string widths causes
Didtiller to print to standard output the bounding box and type of each block.

7 Final Remarks

The design of EPDF aims to enable block-based reformatting of PDF documents with minimal changes
to existing PDF-generating software. Juggler is an application which performs thistask. This report has
described the current state of EPDF and Juggler, and aso given a number of pointers to possible future
developments.

In PDF, nothing is known of what a block is; just what it lookslike. Through the ssimple addition of a
typefield for ablock, Juggler can treat different objectsin different graphical ways. However, it still doesn’t
know what the blocks are: it just knows where to put them. Any attempt to type blocks more strongly, to
create a set of ‘standard’ types (for tables, figures, graphs etc.) and to insert semantic information would
make PDF more difficult to generate and would make the format specific to certain types of content. At the
moment, PDF can represent any kind of printable material. It should remain that way.

Thetypesin EPDF can be compared with the elementsin an SGML document, the DDF withthe DTD.
Typeswill be standard for a particular set of documents or particular project, but should not be standardised
for EPDF.

PDF, like print, is considered afinal form of a document. It can be generated by anything which can
print. Juggler and EPDF go some way towards enabling reuse of thisfinal form.

References

[1] CharlesF. Goldfarb. The SGML Handbook. Oxford University Press, 1990.

[2] Adobe Systems Inc. PostScript Language Reference Manual. Addison-Wesley, Reading, Mas-
sachusetts, second edition, December 1990.

[3] Adobe Systems Inc. Portable Document Format Reference Manual. Addison-Wesley, Reading,
M assachusetts, June 1993.

[4] 1SO/DIS 8613 Information processing. Office Document Architecture (ODA), 1986.

[5] Philip N. Smith, David F. Brailsford, David R. Evans, Leon Harrison, Steve G. Probets, and Peter E.
Sutton. Journal publishing with acrobat: the cajun project. Electronic Publishing—Origination,
Dissemination and Design, 6(4):481-493, December 1993. Proceedings of the Fifth International
Conference on Electronic Publishing, Document Manipulation and Typography (EP94).

18

A mai ndoc. pdf

The next page shows all the blocks from mai ndoc. pdf . For reasons described in section 6 the file itsel f

contained one block per page. For reasons of economy and conservation, Juggler was used to put them
onto one page for this appendix.

19

Second Year Ph.D. Report
Juggler: State of the Act

Philip N. Smith
Autumn 1994

1 Background

In my first year report | reviewed various meth-
ods of document representation and discussed the
possible use of Adobe's Portable Document Format
(PDF) as a common format for revisable multiple-
source documents. Much of the discussion was of
how it might be possibleto enable block level editing
of PDF documents which contained no block infor-
mation whatsoever. Whilethisisaworthwhile goal,
| have come to the conclusion that a far more use-
ful and useable system could be based on a format
including a little more information. This report is
a working document discussing technical details as
well as general principles, and assumes some knowl-
edge of PDF and Acrobat.

2 Introducing Juggler

Jugglerisanembryonic system for layingout ‘ En-
capsulated’ PDF (EPDF) blocks onto pages. An
EPDF block (a heading or paragraph, for example)
isin the same form as a PDF content stream, except
for the addition of a few extra keys. The working
definition of EPDF is such that an EPDF fileis also
a vaid PDF file. However, the extra information
allows Juggler to extract individual blocks from any
number of files and to lay them out onto new pages.
At al stages, the design of EPDF attempts to be
‘Acrobat-friendly’ i.e. it should be possible to gen-
erate EPDF without too many alterationsto existing
software such as Distiller.

In general terms, an EPDF file consists of alarge
set of blocks, and a set of pages which specify views
of those blocks in particular locations. If a block
must be shown on several pages or severa times on
the same page, it need appear in the file only once;
itisjust viewed several times.

2.1 A pointless subsection

To implement thisin a valid PDF file, heavy use
ismade of the fact that PDF allowsthe contents of a
page (what you see) to be described by any number
of streams of page description commands. Though
in most PDF documents the value of the /Contents
key is areference to a single stream of commands,
it may also be an array of references. In EPDF each
page contains such an array. The referenced ob-
jects are alternately views specifiers and imageable
blocks. The view specifiers usually contain coordi-
nate transformation commands to position the next
block correctly on the page.

Once created, ablock never changes. Itisgivena
unique identifier and can be copied into other files.
Even when a block has to be split between columns
or pages, Juggler maintainstheintegrity of the block.
Two distinct views of the same block are defined us-
ing the clipping path operators. In one view the
lower portion becomes invisible, and in the other
the upper portion is clipped out. This means that
the logical block structure of the document is main-
tained independently of the particular layout. This
compares favourably with ODA in which a logical
block must contain two distinct content portionsif it
isto be split between two layout blocks.

Hypertext links are an important feature of PDF
but link simply from one area of a page to another.
In EPDF a block can contain links to other blocks,
and these can be converted to ordinary PDF linksfor
a specific layout. Interestingly, this creates exactly
the same kind of forward referencing problems for
Juggler as have been found in work on the CAJUN
project: if a block has a link to another block, that
link can't be made until it is known whether and
where the target block appears.

3 Conclusion

Althoughthe Juggler applicationisstill at an early
stage of development, it is easy to see that use of
EPDF gives rise to many possibilities. | hope to
investigate some of these possibilities over the next
year, through further development of Juggler.

There will come a point, however, when the main
benefit of using PDF — the fact that almost any-
one can produce it, using any application — is out-
weighed by the extra work involved in using it for
purposes other than those for which it was originally
intended: purposes for which other systems have
already been developed.

B anot herdoc. pdf

The next page shows the single block contained inthe fileanot her doc. pdf .

21

Thisisaparagraph taken from another EPDF
file. I've set it in bold type just to make it easier
tofind, butitisof type/parajust likeall the other
paragraphsin thisdocument.

	Contents
	1 Introduction
	2 EPDF File Structure
	2.1 EPDF Blocks
	2.2 Building a Page of Blocks
	2.3 Repeated Blocks

	3 Page layout
	3.1 Visual Splitting
	3.2 Document Description File (DDF)

	4 Using Juggler --- A Worked Example
	4.1 The DDF
	4.2 Running Juggler

	5 Further Discussion
	5.1 Resource Renaming and the Page Objects
	5.2 Block Reuse
	5.3 Unique IDs and Distributed Documents
	5.4 Structure Hierarchies
	5.5 Correctness Checking with the Spacing Dictionary
	5.6 DDF Improvements
	5.6.1 Headers and Footers
	5.6.2 Justification
	5.6.3 Repeating Content
	5.6.4 Expanding Frames

	5.7 Non-Strict Bounding Boxes
	5.8 Reformatting Blocks
	5.9 Textual References
	5.10 Inter-Block Links

	6 Generating EPDF
	7 Final Remarks
	References
	A {maindoc.pdf}
	B {anotherdoc.pdf}

