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SUMMARY 

This paper discusses a new approach to the problem of dividing the text of a paragraph into 
lines of approximately equal length. Instead of simply making decisions one line at a time, 
the method considers the paragraph as a whole, so that the final appearance of a given line 
might be influenced by the text on succeeding lines. A system based on three simple primitive 
concepts called ‘boxes’, ‘glue’, and ‘penalties’ provides the ability to deal satisfactorily with 
a wide variety of typesetting problems in a unified framework, using a single algorithm that 
determines optimum breakpoints. The algorithm avoids backtracking by a judicious use 
of the techniques of dynamic programming. Extensive computational experience confirms 
that the approach is both efficient and effective in producing high-quality output. The paper 
concludes with a brief history of line-breaking methods, and an appendix presents a simplified 
algorithm that requires comparatively few resources. 
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INTRODUCTION 

One of the most important operations necessary when text materials are prepared for 
printing or display is the task of dividing long paragraphs into individual lines. When 
this job has been done well, people will not be aware of the fact that the words they 
are reading have been arbitrarily broken apart and placed into a somewhat rigid and 
unnatural rectangular framework; but if the job has been done poorly, readers will 
be distracted by bad breaks that interrupt their train of thought. In some cases it 
can be difficult to find suitable breakpoints; for example, the narrow columns often 
used in newspapers allow for comparatively little flexibility, and the appearance of 
mathematical formulas in technical text introduces special complications regardless 
of the column width. But even in comparatively simple cases like the typesetting of 
an ordinary novel, good line breaking will contribute greatly to the appearance and 
desirability of the finished product. In fact, some authors actually write better material 
when they are assured that it will look sufficiently beautiful when it appears in print. 

The line-breaking problem is informally called the problem of ‘justification’, since it 
is the ‘J’ of ‘H & J’ (hyphenation and justification) in today’s commercial composition 
and word-processing systems. However, this tends to be a misnomer, because printers 
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have traditionally used justification to mean the process of taking an individual line of 
type and adjusting its spacing to produce a desired length. Even when text is being 
typeset with ragged right margins (therefore ‘unjustified’), it needs to be broken into 
lines of approximately the same size. The job of adjusting spaces so that left and 
right margins are uniformly straight is comparatively laborious when one must work 
with metal type, so the task of typesetting a paragraph with last century’s technology 
was conceptually a task of justification; nowadays, however, it is no trick at all for 
computers to adjust the spacing as desired, so the line-breaking task dominates the 
work. This shift in relative difficulty probably accounts for the shift in the meaning of 
‘justification’; we shall use the term ‘line breaking’ in this paper to emphasize the fact 
that the central problem of concern here is to find breakpoints. 

The traditional way to break lines is analogous to what we ordinarily do when using 
a typewriter: A bell rings (at least conceptually) when we approach the right margin, 
and at that time we decide how best to finish off that line, without looking ahead to see 
where the next line or lines might end. Once the typewriter carriage has been returned 
to the left margin, we begin afresh without needing to remember anything about the 
previous text except where the new line starts. Thus, we don’t have to keep track of 
many things at once; such a system is ideally suited to human operation, and it also 
leads to simple computer programs. 

Book printing is different from typing primarily in that the spaces are of variable 
width. Traditional practice has been to assign a minimum and maximum width to 
interword spaces, together with a normal width representing the ideal situation. The 
standard algorithm for line breaking (see, for example, Barnett’, page 55) then proceeds 
as follows: Keep appending words to the current line, assuming the normal spacing, 
until reaching a word that does not fit. Break after this word, if it is possible to do 
so without compressing the spaces to less than the given minimum; otherwise break 
before this word, if it is possible to do so without expanding the spaces to more than 
the given maximum. Otherwise hyphenate the offending word, putting as much of it 
on the current line as will fit; if no suitable hyphenation points can be found, this may 
result in a line whose spaces exceed the given maximum. 

There is no need to confine computers to such a simple procedure, since the data for 
an entire paragraph is generally available in the computer’s memory. Experience has 
shown that significant improvements are possible if the computer takes advantage of 
its opportunity to ‘look ahead’ at what is coming later in the paragraph, before making 
a final decision about where any of the lines will be broken. This not only tends to 
avoid cases where the traditional algorithm has to resort to wide spaces, it also reduces 
the number of hyphenations necessary. In other words, line breaking decisions provide 
another example of the desirability of ‘late binding’ in computer software. 

One of the principal reasons for using computers in typesetting is to save money, but 
at the same time we don’t want the output to look cheaper. A properly programmed 
computer should, in fact, be able to solve the line-breaking problem better than a 
skilled typesetter could do by hand in a reasonable amount of time (unless we give this 
person the liberty to change the wording in order to obtain a better fit). For example, 
Duncan2 studied the interword spacing of 958 lines that were manually typeset by a 
“most respectable publishers’ printer” that he chose not to identify by name, and he 
found that nearly 5 %  of the lines were quite loosely set; the spaces on those lines 
exceeded 10 units (i.e., of an em), and two of the lines even had spaces ezceeding 
13 units. We shall see later that a good line-breaking algorithm can do better than this. 
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Besides the avoidance of hyphens and wide spaces, we can improve on the traditional 
line-breaking method by keeping the spaces nearly equal to the normal size, so that 
they rarely approach the minimum or maximum limits. We can also try to avoid rapid 
changes in the spacing of adjacent lines; we can make special efforts not to hyphenate 
two lines in a row, and not to hyphenate the second-last line of a paragraph; we can 
try to control the white space on the final line of the paragraph; and so on. Given any 
mathematical way to rate the quality of a particular choice of breakpoints, we can ask 
the computer to find breakpoints that optimize this function. 

But how is the computer to solve such a problem efficiently? When a given paragraph 
has n optional breakpoints, there are 2" ways to break it into lines, and even the fastest 
conceivable computers could not run through all such possibilities in a reasonable 
amount of time. In fact, the job of breaking a paragraph as nicely as possible into 
equal-size lines sounds suspiciously like the infamous bin-packing problem, which is 
well known to be NP ~ o m p l e t e . ~  Fortunately, however, each line is to consist of 
contiguous information from the paragraph, so the line-breaking problem is amenable 
to the techniques of discrete dynamic p r ~ g r a m m i n g ~ . ~ ;  this means there is a reasonably 
efficient way to attack it. We shall see that the optimum breakpoints can be found 
in practice with only about twice as much computation as needed by the traditional 
algorithm; the new method is sometimes even faster than the old, when we consider 
the time saved by not needing to hyphenate so often. Furthermore the new algorithm 
is capable of doing other things like setting a paragraph one line longer or one line 
shorter, in order to improve the layout of a page. 

FORMULATING T H E  PROBLEM 

Let us now state the line-breaking problem explicitly in mathematical terms. We 
shall use the basic concepts and terminology of the TEX typesetting system6, but in 
simplified form, since the complexities of general typesetting would obscure the main 
principles of line breaking. 

For the purposes of this paper, a paragraph is a sequence x1x2 . . . x,,, of m items, 
where each individual item xi is either a box specification, a glue specification, or a 
penalty specification. 

0 A box refers to something that is to be typeset: either a character from some font 
of type, or a black rectangle such as a horizontal or vertical rule, or something 
built up from several characters such as an accented letter or a mathematical 
formula. The contents of a box may be extremely complicated, or they may be 
extremely simple; the line-breaking algorithm does not peek inside a box to see 
what it contains, so we may consider the boxes to be sealed and locked. As far as 
we are concerned, the only relevant thing about a box is its width: When item xi of 
a paragraph specifies a box, the width of that box is a real number wi representing 
the amount of space that the box will occupy on a line. The width of a box may be 
zero, and in fact it may also be negative, although negative widths must be used 
with care and understanding according to the precise rules laid down below. 

0 Glue refers to blank space that can vary its width in specified ways; it is an elastic 
mortar used between boxes in a typeset line. When item xi of a paragraph specifies 
glue, there are three real numbers (wi, yi ,  zj) of importance to the line-breaking 
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algorithm: 

wi is the ‘ideal’ or ‘normal’ width; 
yi is the ‘stretchability’; 
zi is the ‘shrinkability’. 

For example, the space between words in a line is often specified by the values 
wi = fem,  yi = i e m ,  zi = $em, where one em is the set size of the type being 
used (approximately the width of an uppercase ‘M’ in classical type styles). The 
actual amount of space occupied by this glue can be adjusted when justifying 
a line to some desired width; if the normal width is too small, the adjustment 
is proportional to yi, and if the normal width is too large the adjustment is 
proportional to zi. The numbers wi, yi, and zi may be negative, subject to certain 
natural restrictions explained later; for example, a negative value of wi indicates 
a backspace. When yi = zi = 0, the glue has a fixed width wi. Incidentally, the 
word ‘glue’ is perhaps not the best term, because it sounds a bit messy; a word 
like ‘spring’ would be better, since metal springs expand or compress to fill up 
space in essentially the way we want. However, we shall continue to say ‘glue’, a 
term used since the early days of TEX (1977), because many people claim to like 
it. A glob of glue is often called a skip by TEX users, and it seems preferable to 
speak of boxes and skips rather than boxes and springs or boxes and glues. A 
skip, by any other name, is of course the same abstract concept, embodied by the 
three values (wi,yi, xi). 

Penalty specifications refer to potential places to end one line of a paragraph 
and begin another, with a certain ‘aesthetic cost’ indicating how desirable or 
undesirable such a breakpoint would be. When item xi  of a paragraph specifies 
a penalty, there is a number pi that helps us decide whether or not to end a 
line at this point, as explained below. Intuitively, a high penalty p i  indicates 
a relatively poor place to break, while a negative value of p i  stands for a good 
breaking-off place. The penalty p i  may also be + 00 or - 00, where ‘00’ denotes 
a large number that is infinite for practical purposes, although it really is finite; 
in TEX, any penalty 2 1000 is treated as +a, and any penalty 6 - 1000 is 
treated as - co. When p i  = + co, the break is strictly prohibited; when p i  = 
- GO, the break is mandatory. Penalty specifications also have widths wi, with the 
following meaning: If a line break occurs at this place in the paragraph, additional 
typeset material of width wi will be added to the line just before the break occurs. 
For example, a potential place at which a word might be hyphenated would be 
indicated by letting p i  be the penalty for hyphenating there and letting wi be 
the width of the hyphen. Penalty specifications are of two kinds, flagged and 
unflagged, denoted by f i  = 1 and f i  = 0. The line-breaking algorithm we shall 
discuss tries to avoid having two consecutive breaks at flagged penalties (e.g., two 
hyphenations in a row). 

Thus, box items are specified by one number wi, while glue items have three numbers 
(wi,yi ,  xi) and penalty items have three numbers (wi,pi,fi). For simplicity, we shall 
assume that a paragraph x1 . . . x, is actually specified by six sequences, namely 

t ,  . . . t,, where t i  is the type of item x i ,  either ‘box’, ‘glue’, or ‘penalty’; 
w 1  . . . w,, where wi is the width corresponding to xi; 
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y1 . . . y,, where yi is the stretchability corresponding to x i  if t i  = ‘glue’, 

z, . . . z,, where 3 is the shrinkability corresponding to x i  if ti = ‘glue’, 

p ,  . . .p , ,  where p i  is the penalty at xi if ti = ‘penalty’, 

fi . . .f,, where3 = 1 if xi is a flagged penalty, otherwise3 = 0. 

otherwise yi = 0; 

otherwise zi = 0; 

otherwise p i  = 0; 

Any fixed unit of measure can be used in connection with wi, yi, and zi; TEX uses 
printers’ points, which are slightly less than inch. In this paper we shall specify 
all widths in terms of machine units equal to h e m ,  assuming a particular size of 
type, since the widths turn out to be integer multiples of this unit in many cases; 
the numbers in our examples will be as simple as possible when expressed in terms 
of machine units. 

Perhaps the reader feels this is altogether too much mathematical machinery to 
deal with something that is quite straightforward. However, each of the concepts 
defined here must be dealt with somehow when breaking paragraphs into lines, and it is 
important to give precise rules even for the comparatively simple job of setting straight 
text. We shall see later that these primitive notions of boxes, glue, and penalties 
will actually support a surprising variety of other line-breaking applications, so that a 
careful attention to details bill solve many other problems as a free bonus. 

For the time being, it will be best to think of the simple application to straight 
text material such as the typesetting of a paragraph in a newspaper or in a short story, 
since this will help us internalize the abstract concepts represented by wi, yi, etc. A 
typesetting system like TEX will put such an actual paragraph into the abstract form 
we want in the following way: 

(1) If the paragraph is to be indented, the first item x, will be an empty box whose 
width is the amount of indentation. 

(2) Each word of the paragraph becomes a sequence of boxes for the characters of the 
word, including punctuation marks that belong with that word. The widths wi 
are determined by the fonts of type being used. Flagged penalty items are inserted 
into these words wherever an acceptable hyphenation could be used to divide a 
word at the end of a line. (Such hyphenation points do not need to be included 
unless necessary, as we shall see later, but for the moment let us assume that all 
of the permissible hyphenations have been specified.) 

(3) There is glue between words, corresponding to the recommended spacing conven- 
tions of the fonts of type in use. The glue might be different in different contexts; 
for example, TEX will make the glue specifications following punctuation marks 
slightly different from the normal interword glue. 

(4) Explicit hyphens and dashes in the text will be followed by flagged penalty items 
having width zero. This specifies a permissible line break after a hyphen or a 
dash. Some style conventions also allow breaks before em-dashes, in which case 
an unflagged width-zero penalty would precede the dash. 

(5)  At the very end of a paragraph, two items are appended so that the final line 
will be treated properly. First comes a glue item x,-, that specifies the white 
space allowable at the right of the last line; then comes a penalty item x, with 
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p ,  = - co to force a break at the paragraph end. TEX ordinarily uses a ‘finishing 
glue’ with w,- = 0, ym-l = 00 (actually 100000 points, which is finite but 
large enough to behave like a), and z,,,-~ = 0; thus the normal space at the end 
of a paragraph is zero but it can stretch a great deal. The net effect is that’the 
other spaces on the final line will shrink, if that line exceeds the desired measure; 
otherwise the other spaces will remain essentially at their normal value (because 
the finishing glue will do all the stretching necessary to fill up the end of the line). 
More subtle choices of the finishing glue x,- 

For example, let’s consider the paragraph of Figure 1 ,  which is taken from Grimm’s 
Fairy Tales.7 The five rules above convert the text into the following sequence of 

will be discussed later. 

601 items: 

x1 = empty box for indentation 
x2 = box for ‘I’ 

w1 = 18 
w2 = 6 

x3 = box for ‘n’ 
x4 = glue for interword space 
x5 = box for ‘0’ 

w 3  = 10 
w4 = 6, 
w 5  = 9 

Y4 = 3 ,  

...... 
x 3 0 9  = box for ‘1’ 
~ 3 1 0  = box for ‘i’ 
xjl = box for ‘m’ ~ 3 1 1  = 15 
~ 3 1 2  = box for ‘e’ w312 = 
x31 = box for ‘-’ w 3 1 3  = 
x 3 1 4  = penalty for explicit hyphen 
x 3 1 5  = box for ‘t’ 

w309 = 
w310 = 

w314 = 0, 
w315 = 

P 3 1 4  = 

. . . . . . . . 
x 5 9 2  = box for ‘y’ 
x593 = penalty for optional hyphen 
x594 = box for ‘t’ 
x595 = box for ‘h’ 
x 5 9 6  = box for ‘i’ 
x597 = box for ‘n’ 
x598 = box for ‘g’ 
x599 = box for ‘.’ 
x 6 0 0  = finishing glue 
x 6 0 1  = forced break 

z4 = 2 

w 5 9 2  = 10 
w 5 9 3  = 6 ,  
w 5 9 4  = 7 
w 5 9 5  = 10 

w597 = 10 
W598 = 9 
w 5 9 9  = 5 

P 5 9 3  = 50’ 

w596 = 

w600 = Y600 = O0, 2600 = 
w601 = O, P 6 0 1  = f 6 0 1  = 

f 3 1 4  = 1 

f 5 9 3  = 1 

In this particular example, a penalty of 50 has been assessed for every line that ends 
with a hyphen. In olden times when wis4,ing still helped one, there . la1 

lived a king whose daughters were all beaqtiful; and . a i a  

the youngst was so beaqt&ful that the sun i@If’, which -.nnl 

has seen so much, was astoqished whenper it shone in 
her face. Close by the king’s castle lay a great dark .lT1 

fowst, and uqier an old limqtree in the forgst was a -146 

well, and when the day was very warm, the king’s child -.enK 

went out into the forpt and sat down by the side of the -.89a 

cool fouqtain; and when she was bored she took a .9er 

golden ball, and threw it up on high and caught it; and -.vn8 

Figure 1 .  A n  example 
paragraph that has been 
typeset by the ‘first-fit’ 
method. Small triangles 

the adjustment ratio for 
spaces appears at the 
right of each line. 

show permissible places to 
divide words with hyphens; 

this ball was her favorite pla@hing. .001 
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Optional hyphenation points have been indicated with triangles in Figure 1 .  It is 
considered bad form to insert a hyphen unless at least two letters precede it and three 
follow it; furthermore the syllable following a hyphen shouldn’t have a silent ‘e’, so 
we do not admit a hyphenation like ‘sylla-ble’. Smooth reading also means that the 
word fragment preceding a hyphen should be long enough that it can be pronounced 
correctly, before the reader sees the completion of the word on the next line; thus, a 
hyphenation like ‘pro-cess’ would be disturbing. This pronunciation rule accounts for 
the fact that the second-last word of Figure 1 does not admit the potential hyphenation 
‘fa-vorite’, since the fragment ‘fa-’ might well be the beginning of ‘fa-ther’ which is 
pronounced quite differently. 

The choice of proper hyphenation points is an important but difficult subject that 
is beyond the scope of this paper. We shall not mention it further except to assume 
that (a) such potential breakpoints are available to our line-breaking algorithm when 
needed; (b) we prefer not to hyphenate when there is a way to avoid it without seriously 
messing up the spacing. 

The rules for breaking a paragraph into lines should be intuitively clear from this 
example, but it is important to state them explicitly. We shall assume that every 
paragraph ends with a forced break item x, (penalty -m). A legal breakpoint in a 
paragraph is a number b such that either (i) x b  is a penalty item with p b <  co, or (ii) xb 
is a glue item and x b - l  is a box item. In other words, one can break at a penalty, 
provided that the penalty isn’t co, or at glue, provided that the glue immediately 
follows a box. These two cases are the only acceptable breakpoints. Note, for example, 
that several glue items may appear consecutively, but it is possible to break only at 
the first of them, and only if this one does not immediately follow a penalty item. A 
penalty of co can be inserted before glue to make it unbreakable. 

The job of line breaking consists of choosing legal breakpoints 6,  < + . . < b,, which 
specify the ends of k lines into which the paragraph will be broken. Each penalty 
item xi whose penalty p i  is - GO must be included among these breakpoints; thus, the 
final breakpoint b, must be equal to m. For convenience we let b, = 0, and we define 
indices aI  < - - . <ak to mark the beginning of the lines, as follows: The value of aj 
is the smallest integer i between b j - l  and bj such that xi is a box item or a penalty 
item with p i  = -a; if none of the xi in the range b j - l  < i < bj meet this criterion, 
we let aj = bj .  Then the j th  line consists of all items x i  for aj  < i < bj ,  plus item 
xb,  if it is a penalty item. In other words we get the lines of the broken paragraph by 
cutting it into pieces at the chosen breakpoints, then removing glue and penalty items 
at the beginning of each resulting line. 

DESIRABILITY CRITERIA 

According to this definition of line breaking, there are 2” ways to break a paragraph 
into lines, if the paragraph has n legal breakpoints that aren’t forced. For example, 
there are 129 legal breakpoints in the paragraph of Figure 1 ,  not counting x6,,, so 
it can be broken into lines in 2129 ways, a number that exceeds lo3’. But of course 
most of these choices are absurd, and we need to specify some criteria to separate 
acceptable choices from the ridiculous ones. For this purpose we need to know (a) the 
desired lengths of lines, and (b) the lengths of lines corresponding to each choice of 
breakpoints, including the amount of stretchability and shrinkability that is present. 
Then we can compare the desired lengths to the lengths actually obtained. 
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We shall assume that a list of desired lengths Z,, I,, .Z3, . . . is given; normally these 
are all the same, but in general we might want lines of different lengths, as when fitting 
text around an illustration. The actual length Lj of thejth line, after breakpoints have 
been chosen as above, is computed in the following obvious way: We add together 
the widths wi of all the box and glue items in the range uj < i < b,, and we add w,,, 
to this total if xb, is a penalty item. Thej th  line also has a total stretchability Yj  and 
total shrinkability Zj,  obtained by summing all of the yi and zi for glue items in the 
range uj < i < bj. Now we can compare the actual length Lj  to the desired length Z, 
by seeing if there is enough stretchability or shrinkability to change Lj into 4; we 
define the adjustment ratio rj of the j th  line as follows: 

If Lj = lj (a perfect fit), let rj = 0. 
If L, < Z j  (a short line), let r, = (Zj-Lj)/ Yj ,  assuming that Y j  > 0; the value 

If L, > Z, (a long line), let r j  = (Zj-Lj)/Zj, assuming that Z j  > 0; the value of r j  

Thus, for example, rj = 4 if the total stretchability of l inej  is three times what would 
be needed to expand the glue so that the line length would change from L, to 5. 

According to this definition of adjustment ratios, thej th  line can be justified by 
letting the width of all glue items xi on that line be 

wi+r jy i ,  if rj> 0; 
w i + r j z i ,  if rj< 0; 

For if we add up the total width of that line after such adjustments are made, we get 
either Lj+rj Yj = 5 or Lj+r jZj  = 5, depending on the sign of rj. This distributes 
the necessary stretching or shrinking by amounts proportional to the individual glue 
components yi or zi, as desired. 

For example, the small numbers at the right of the individual lines in Figure 1 show 
the values of rj in those lines. A negative ratio like - .881 in the third line means that 
the spaces in that line are narrower than their ideal size; a fairly large positive ratio 
like .965 in the third-last line indicates a very ‘loose’ fit. 

Although there are 2lZ9 ways to break the paragraph of Figure 1 into lines, it turns 
out that only 49 of these will result in breaks whose adjustment ratios rj do not 
exceed 1 in absolute value; this means that the spaces between words after justification 
will lie between wi-zi and wi+yi. Furthermore, only 30 of these 49 ways to make 
‘nice’ breaks will do so without introducing hyphens. One of these ways is obtained by 
moving ‘the’ from the eighth line down to the ninth. 

Our main goal is to find a way to avoid choosing any breakpoints that lead to lines 
in which the words are spaced very far apart, 
or in which they are very close together, because such lines are distractingand harder to read. 
We might therefore say that the line-breaking problem is to find breaks such that 
lrjl < 1 in each line, with the minimum number of hyphenations subject to this 
condition. Such an approach was taken by Duncan et a1.’ in the early 1960s, and 
they obtained fairly good results. However, this criterion depends only on the values 
wi-zi and wi+yi,  not wi itself, so it does not use all the degrees of freedom present 
in our data. Furthermore, such stringent conditions may not be possible to achie‘ve; for 
example, if each line of our example were to be 418 units wide, instead of the present 

of rj is undefined if Yj< 0 in this case. 

is undefined if Z j  < 0 in this case. 
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In olden times when wisung still helped one, there 
lived a king whose daughters were all beau,.t#ul; and . d i a  

the younest was so beaqtgul that the Bun iQelf, which -.ant 

has seen so much, was astoqjshed whewver it shone .ddd 

in her face. Close by the king’s castle lay a great dark -.m65 
fopst, and uqder an old lim%tree in the forpt was a 
well, and when the day was very warm, the king’s child -+a06 

went out into the for&& and sat down by theside of .zsI 

the cool fouqtain; and when she was bored she took a -.lal 

golden ball, and threw it up on high and caught it; .60z 

Figure 2. The paragraph 
of Figure 1 when the ‘best-jit’ 
method has been used to find 
successive breakpoints. and this ball was her favoqjte plaGhing. .a01 

width of 421 units, there would be no way to set the text of Figure 1 without having at 
least one very tight line (rj < -1) or at least one very loose line (rj > 1). 

We can do a better job of line breaking if we deal with a continuously varying 
criterion of quality, not simply the yes/no tests of whether Irjl ,< 1 or not. Let us 
therefore give a quantitative evaluation of the badness of the j th line by finding a 
formula that is nearly zero when I rj 1 is small but grows rapidly when I rj I takes values 
exceeding 1. Experience with TEX has shown that good results are obtained if we 
define the badness of l ine j  as follows: 

00, if rj is undefined or rj < - 1 ; 
Bj = ( 1001 rjI3, otherwise. 

Thus, for example, the individual lines of Figure 1 have badness ratings that are 
approximately equal to 0, 7, 68, 18, 5 ,  0, 69, 72, 90, 49, 0, respectively. Note that a 
line is considered to be ‘infinitely bad’ if rj < -1; this means that glue will never be 
shrunk to less than wi -zi. However, values of rj >1 are only finitely bad, so they 
will be permitted if there is no better alternative. 

A slight improvement over the method used to produce Figure 1 leads to Figure 2. 
Once again each line has been broken without looking ahead to the end of the paragraph 
and without going back to reconsider previous choices, but this time each break was 
chosen so as to minimize the ‘badness plus penalty’ of that line. In other words, when 
choosing between alternative ways to end thejth line, given the ending of the previous 
line, we obtain Figure 2 if we take the minimum possible value of Pj+nj; here pj is 
the badness as defined above, and nj is the amount of penalty pbj if the j th  line ends 
at a penalty item, otherwise nj = 0. Figure 2 improves on Figure 1 by moving words 
down from lines 4, 8, and 10 to the next line. 

The method that produces Figure 1 might be called the ‘first-fit’ algorithm, and the 
corresponding method for Figure 2 might be called the ‘best-fit’ algorithm. We have 
seen that best-fit is superior to first-fit in this particular case, but other paragraphs can 
be contrived in which first-fit finds a better solution; so a single example is not sufficient 
to decide which method is preferable. In order to make an unbiased comparison of 
the methods, we need to get some statistics on their ‘typical’ behavior. Therefore 
300 experiments were performed, using the text of Figures 1 and 2, with line widths 
ranging from 350 to 649 in unit steps; although the text for each experiment was the 
same, the varying line widths made the problems quite different, since line-breaking 
algorithms are quite sensitive to slight changes in the measurements. The ‘tightest’ 
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In olden times when wish@g still helped one, there 
lived a king whose daug&ers were all beaqtgul; and .4ia 

the youngst was so beaqtgul that the sun iQelf, which 
has seen so much, was astoqished wheqver it shone .444 

in her face. Close by the king’s castle lay a great dark -.sea 

forpt, and u d e r  an old lim%tree in the for& was .TO$ 

a well, and when the day was very warm, the king’s 
child went out into the for8st and sat down by the side -.e14 

of the cool fouqtain; and when she was bored she took -.4el 
a golden ball, and threw it up on high and caught it; .%04 

Figure 3. This is the 
‘best possible’ way  to break 
the lines in the paragraph 
of Figures 1 and 2 ,  in 
the sense of fewest total 
‘demerits’ as defined in 
the text. and this ball was her favorite plaxthing. .001 

and ‘loosest’ lines in each resulting paragraph were recorded, as well as the number of 
hyphens introduced, and the comparisons came out as follows: 

min yj max rj hyphens 
first-fit < best-fit 69% 35% 12% 
first-fit = best-fit 26% 50% 77% 
first-fit > best-fit 5% 15% 11% 

Thus, in 69% of the cases, the minimum adjustment ratio rj in the lines typeset 
by first-fit was less than the corresponding value obtained by best-fit; the maximum 
adjustment ratio in the first-fit lines was less than the maximum for best-fit about 35% 
of the time; etc. We can summarize this data by saying that the first-fit method usually 
typesets at least one line that is tighter than the tightest line set by best-fit, and it 
also usually produces a line that is as loose or looser than the loosest line of best-fit. 
The number of hyphens is about the same for both methods, although best-fit would 
produce fewer if the penalty for hyphenation were increased. A more detailed study of 
the experimental data shows that the superiority of best-fit is especially pronounced in 
the cases where the lines are rather narrow. 

We can actually do better than both of these methods by finding an ‘optimum’ 
way to choose the breakpoints. For example, Figure 3 shows how to improve on both 
Figures 1 and 2 by making line 6 a bit looser, thereby avoiding a rather tight 7th line 
and a fairly loose 10th line. This pattern of breakpoints was found by an algorithm 
that will be discussed in detail below. It  is globally optimum in the sense of having 
fewest total ‘demerits’ over all choices of breakpoints, where the demerits assessed for 
the j th  line are computed by the formula 

I (1 +Pj>’+aj, 

( I  +pj+nj)’+aj, if nj jO;  
S j =  (I+pj)’-n;+aj, if --o0<nj<o; 

if nj = -m. 

Here pj and nj are the badness rating and the penalty, as before; and aj is zero unless 
both l i ne j  and the previous line ended on flagged penalty items, in which case aj is 
the additional penalty assessed for consecutive hyphenated lines (e.g., 3000). We shall 
say that we have found the best choice of breakpoints if we have minimized the sum 
of Sj over all linesj. 
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The above formula for Sj is quite arbitrary, like our formula for pj, but it works well 
in practice because it has the following desirable properties: (a) Minimizing the sum 
of squares of badnesses not only tends to minimize the maximum badness per line, it 
also provides secondary optimization; for example, when one particularly bad line is 
inevitable, the other line breaks will also be optimized. (b) The demerit function Sj 
increases as nj increases, except in the case nj = - co when we don’t need to consider 
the penalty because such breaks are forced. (c) Adding 1 to j j  instead of using the 
badness pj by itself will minimize the total number of lines in cases where there are 
breaks with approximately zero badness. 

For example, the following table shows the respective demerits charged to the in- 
dividual lines of the paragraphs in Figures 1 ,  2, and 3: 

First fit Best fit Optimum fit 
1 1 1 

64 64 64 
4803 4803 4803 

374 96 96 
39 33  3 3  

2 2 1274 
4958 4958 43 
5313 11  581 
8252 3 166 
2497 519 1 

1 1 1 
26304 10491 7063 

In the first-fit and best-fit methods, each line is likely to come out about as badly as 
any other; but the optimum-fit method tends to have its bad cases near the beginning, 
since there is less flexibility in the opening lines. 

Figure 4 on the following page shows another comparison of the same three methods 
on the same text, this time with a line width of 500 units. Note that the optimum 
algorithm finds a solution that does not hyphenate any words, because of its ability 
to ‘look ahead’; the other two methods, which proceed one line at a time, miss this 
solution because they do not know that a slightly worse first line leads in this case to 
fewer problems later on. The demerits per line in Figure 4 are 

~ 

In this example the 
primarily due to the 

First fit 
1734 
4692 
3440 
3066 

3 
1 

276 
5 
1 

13218 

Best fit 
1734 
4692 
3440 

9 
1 

22 
210 

24 
10 

1 
10143 

Optimum fit 
2357 

6 
93 8 
21 2 

1 
2 

27 
10 

47 6 
1 

403 0 
3440 demerits on the third line for ‘first fit’ and ‘best fit’ are 
penalty of 50 for an inserted hyphen. 



DONALD E. KNUTH AND MICHAEL F. PLASS 1130 

(a> In olden times when wishing still helped one, there lived a king -.I41 

whose daughters were all beautiful; and the youngest was so 
beautiful that the sun itself, which has seen so much, was aston- - . la6 

ished whenever it shone in her face. Close by the king’s castle lay 
a great dark forest, and under an old lime-tree in the forest was -.lol 

a well, and when the day was very warm, the king’s child went 
out into the forest and sat down by the side of the cool fountain; -.6a8 

and when she was bored she took a golden ball, and threw it up -.aaa 

on high and caught it; and this ball was her favorite plaything. .aaO 

In olden times when wishing still helped one, there lived a king -.Tal 

whose daughters were all beautiful; and the youngest was so .nTT 

beautiful that the sun itself, which has seen so much, was aston- -.4as 

ished whenever it shone in her face. Close by the king’s castle . a m  

lay a great dark forest, and under an old lime-tree in the forest .OaT 

was a well, and when the day was very warm, the king’s child .3aa 

went out into the forest and sat down by the side of the cool m a  

fountain; and when she was bored she took a golden ball, and .a40 

threw it up on high and caught it; and this ball was her favorite -.a61 

plaything. .am 

In olden times when wishing still helped one, there lived a 
king whose daughters were all beautiful; and the youngest was .ado 

so beautiful that the sun itself, which has seen so much, was .EET 

astonished whenever it shone in her face. Close by the king’s .El4 

castle lay a great dark forest, and under an old lime-tree in the .OaI 

forest was a well, and when the day was very warm, the king’s .lTa 

child went out into the forest and sat down by the side of the 
cool fountain; and when she was bored she took a golden ball, .aTs 

and threw it up on high and caught it; and this ball was her .sn3 

favorite plaything. .aoa 

Figure 4 .  A somewhat wider setting of the same sample paragraph, by (a)  the first-fit 
method, (b )  the best-fit method, and ( c )  the optimum-fit method. Notice the tight line 
followed by a loose line at the beginning of examples ( a )  and (b ) ,  while no hyphenation 
was needed in ( c ) ;  on the other hand, ( a )  is one line shorter than (b )  and ( c ) .  

The first-fit method found a way to set the paragraph of Figure 4 in only nine lines, 
while the optimum-fit method yields ten. Publishers who prefer to save a little paper, 
as long as the line breaks are fairly decent, might therefore prefer the first-fit solution 
in spite of all its demerits. There are various ways to modify the specifications so that 
the optimum-fit method will give more preference to short solutions; for example, the 
stretchability of the glue on the final line could be decreased from its present huge 
size to about the width of the line, thereby making the optimum algorithm prefer final 
lines that are nearly full. We could also replace the constant ‘1’ in the definition of 
demerits Sj by a variable parameter. The algorithm we shall describe below can in fact 
be set up to produce the optimum solution having the minimum number of lines. 

The text in these examples is quite straightforward, and we have been setting type 
in reasonably wide columns; thus we have not been considering especially difficult or 
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In the meantime it 
knocked a second 
time, and cried, 
“Princess, youngest 
princess, open the 
door for me. Do you 
not know what you 
said to me yesterday 
by the cool waters of 
the we117 princess, Princess, 

open the door for 
ma!” 

Figure 5 .  Here the best-fit method is unable to find a satisfactory way to 
break the lines, with respect to justified setting, because the columns are 
so narrow. For example, the third line contains only two spaces, and the 
third-last line only one; these spaces would have to stretch considerably if 
the lines were justified. Thefirst line of this paragraph also illustrates the 
‘sticking-out’ problem that arises in unjustified settings. 

unusual line-breaking problems. Yet we have seen that an optimizing algorithm can 
produce noticeably better results even in such routine cases. The improved algorithm 
will clearly be of significant value in more difficult situations, for example when math- 
ematical formulas are embedded in the text, or when the lines must be narrow as in 
a newspaper. 

Anyone who is curious about the fate of the beautiful princess mentioned in Figures 1 
through 4 can find the answer in Figure 6, which presents the whole story. The columns 
in this example are unusually narrow, allowing only about 21 or 22 characters per 
line; a width of about 35 characters is normal for newspapers, and magazines often 
use columns about twice as wide as those in Figure 6. The line-at-a-time algorithms 
cannot cope satisfactorily with such stringent restrictions, but Figure 6 shows that the 
optimizing algorithm is able to break the text into reasonably equal lines. 

Incidentally, our line-breaking criteria have been developed with justified text in 
mind; but the algorithm has been used in Figure 6 to produce ragged right margins. 
Another criterion of badness, which is based solely on the difference between the 
desired length 4 and the actual length Lj, should actually be used in order to get 
the best breakpoints for ragged-right typesetting, and the space between words should 
be allowed to stretch but not to shrink so that Lj never exceeds 4. Furthermore, 
ragged-right typesetting should not allow words to ‘stick out’, i.e., to begin to the 
right of where the following line ends (see the word ‘it’ in Figure 5). Thus, it turns 
out that an algorithm intended for high quality line breaking in ragged-right formats 
is actually a little bit harder to write than one for justified text, contrary to the 
prevailing opinion that justification is more difficult. On the other hand, Figure 6 
indicates that an algorithm designed for justification usually can be tuned to produce 
adequate breakpoints when justification is suppressed. 

The difficulties of setting narrow columns are illustrated in an interesting way by the 
pattern of words 

“Now, push your little golden plate nearer . . .” 
that appears in the third-last paragraph of Figure 6. We don’t want to hyphenate any 
of these words, for reasons stated earlier; and it turns out that all of the four-word 
sequences containing the word ‘little’, namely 

“Now, push your little 
push your little golden 
your little golden plate 

little golden plate nearer 
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I N  olden times when 
wishing still helped 
one, there lived a king 
whose daughters were 
all beautiful; and the 
youngest was so beau- 
tiful that the sun it- 
self, which has seen so 
much, was astonished 
whenever i t  shone in 
her face. Close by 
the king’s castle lay a 
great dark forest, and 
under an old lime-tree 
in the forest was a 
well, and when the 
day was very warm, 
the king’s child went 
out into the forest 
and sat down by 
the side of the cool 
fountain; and when 
she was bored she 
took a golden ball, 
and threw i t  up on 
high and caught it; 
and this ball was her 
favorite plaything. 

that  on one occasion 
the princess’s golden 
ball did not fall into 
the little hand that 
she was holding up 
for it, but on to  the 
ground beyond, and 
it rolled straight into 
the water. The king’s 
daughter followed i t  
with her eyes, but 
i t  vanished, and the 
well was deep, so 
deep that the bottom 
could not be seen. At 
this she began to cry, 
and cried louder and 
louder, and could not 
be comforted. And 
as she thus lamented 
someone said to  her, 
“What ails you, king’s 
daughter? You weep 
so that  even a stone 
would show pity.” 

She looked round 
to the aide from 
whence the voice 
came, and saw a frog 
stretching forth its 
big, ugly head from 

Now i t  so happened 
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the water. “Ah, old 
water-splasher, is i t  
you?” said she; ”I 
am weeping for my 
golden ball, which has 
fallen into the well.” 
“Be quiet, and do not 
weep,” answered the 
frog. “I can help you; 
but what will you give 
me if I bring your 
plaything up again?” 
“Whatever you will 
have, dear frog,” said 
she; “my clothes, my 
pearls and jewels, and 
even the golden crown 
that I am wearing.” 
The frog answered, 
“I do not care for your 
clothes, your pearls 
and jewels, nor for 
your golden crown; 
but if you will love 
me and let me be 
your companion and 
play-fellow, and sit 
by you a t  your little 
table, and eat off your 
little golden plate, 
and drink out of your 
little cup, and sleep in 
your little bed-if you 
will promise me this 
I will go down below, 
and bring you your 
golden ball up again.” 

“Oh yes,” said she, 
“I promise you all 
you wish, if you will 
but bring me my ball 
back again.” But she 
thought, “How the 
silly frog does talk! 
All he does is sit in the 
water with the other 
frogs, and croak. He 
can be no companion 
to any human being.” 

But the frog, when 
he had received thie 
promise, put his head 
into the water and 
sank down; and in a 
short while he came 
swimming up again 
with the ball in his 
mouth, and threw it 
on the grass. The 
king’s daughter was 

delighted to  see her 
pretty plaything once 
more, and she picked 
i t  up and ran away 
with it. “Wait, wait,” 
said the frog. “Take 
me with you. I can’t 
run as you can.” But 
what did it avail him 
t o  scream his croak, 
croak, after her, as 
loudly as he could? 
She did not listen to  
it, but  ran home and 
soon forgot the poor 
frog, who was forced 
to go back into his 
well again. 

The next day when 
she had seated her- 
self a t  table with the 
king and all the cour- 
tiers, and was eet- 
ing from her little 
golden plate, some- 
thing came creeping 
splish splash, splieh 
splash, up the marble 
staircase; and when 
i t  had got to  the 
top, i t  knocked a t  
the door and cried, 
“Princess, youngest 
princess, open the 
door for me.” She 
ran to see who was 
outside, but when 
she opened the door, 
there sat the frog 
in front of it. Then 
she slammed the door 
to, in great haste, 
sat down t o  dinner 
again, and was quite 
frightened. The king 
saw plainly that her 
heart was beating vi- 
olently, and said, “My 
child, what are you so 
afraid of? Is there per- 
chance a giant outside 
who wants t o  carry 
you away?” “Ah, no,” 
replied she. “It is no 
giant, i t  is a disgust- 
ing frog.” 

“What does a frog 
want with you?” “Ah, 
dear father, yesterday 
as I was in the forest 

sitting by the well, 
playing, my golden 
ball fell into the 
water. And because 
I cried so, the frog 
brought i t  out again 
for me; and because 
he so insisted, I prom- 
ised him he should 
be my companion, but 
I never thought he 
would be able to  come 
out of his water. And 
now he is outside 
there, and wants to  
come in to  see me.” 

In the meantime 
it knocked a sec- 
ond time, and cried, 
“Princess, youngest 
princess, open the 
door for me. Do you 
not know what you 
said t o  me yesterday 
by the cool waters 
of the well? Prin- 
cess, youngest prin- 
cess, open the door 
for me!” 

Then said the king, 
“That which you have 
promised must you 
perform. Go and let 
him in.” She went 
and opened the door, 
and the frog hopped 
in and followed her, 
step by step, to  her 
chair. There he sat 
and cried, “Lift me 
up beside you.” She 
delayed, until at last 
the king commanded 
her to  do it. Once the 
frog was on the chair 
he wanted to  be on 
the table, and when 
he was on the table he 
said, “Now, push your 
little golden plate 
nearer to  me, that  
we may eat together.” 
She did this, but i t  
was easy to  see that 
she did not do i t  will- 
ingly. The frog en- 
joyed what he ate, but 
almost every mouth- 
ful she took choked 
her. At length he said, 

are too long to fit in one line. Therefore the word ‘little’ will have to appear in a 
line that contains only three words and two spaces, no matter what text precedes this 
particular sequence. 

The final paragraphs of the story present other difficulties, some of which involve 
complex interactions spanning many lines of the text, making it impossible to find 
breakpoints that would avoid occasional wide spacing if the text were justified. Figure 7 
shows what happens whena portion of Figure 6 is, in fact, justified; this is the most 
difficult part of the entire story, in which one of the lines in the optimum solution is 
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‘‘I have eaten and 
am satisfied, now I 
am tired; carry me 
into your little room 
and make your little 
silken bed ready, and 
we will both lie down 
and go to sleep.” 

The king’s daugh- 
ter began to cry, for 
she was afraid of the 
cold frog, which she 
did not like to  touch, 
and which was now 
to  sleep in her pretty, 
clean little bed. But 
the king grew angry 
and said, “He who 
helped you when you 
were in trouble ought 
not afterwards to  be 
despised by you.” So 
she took hold of the 
frog with two fingers, 
carried him upstairs, 
and put him in a cor- 
ner. But when she was 
in bed he crept to her 
and said, ‘‘I am tired, 
I want to sleep as well 
as you; lift me up or I 
will tell your father.” 
At this she was terri- 
bly angry, and took 
him up and threw him 
with all her might 
against the wall. 
“Now, will you be 
quiet, odious frog?” 
said she. But when he 
fell down he was no 
frog but a king’s son 
with kind and beauti- 
ful eyes. He by her 
father’s will was now 
her dear companion 
and husband. Then 
he told her how he 
had been bewitched 
by a wicked witch, 
and how no one could 
have delivered him 
from the well but 
herself, and that  to- 
morrow they would 
go together into his 
kingdom. 

Then they went to 
sleep, and next morn- 
ing when the sun 

awoke them, a car- 
riage came driving 
up with eight white 
horses, which had 
white ostrich feath- 
ers on their heads, 
and were harnessed 
with golden chains; 
and behind stood 
the young king’s ser- 
vant Faithful Henry. 
Faithful Henry had 
been so unhappy 
when his master was 
changed into a frog, 
that  he had caused 
three iron bands to  
be laid round his 
heart, lest i t  should 
burst with grief and 
sadness. The car- 
riage was to conduct 
the young king into 
his kingdom. Faithful 
Henry helped them 
both in, and placed 
himself behind again, 
and was full of joy 
because of this de- 
liverance. And when 
they had driven a part 
of the way, the king’s 
son heard a cracking 
behind him as if some- 
thing had broken. So 
he turned round and 
cried, “Henry, the 
carriage is breaking.” 

“No, master, i t  is 
not the carriage. It 
is a band from my 
heart, that  was put 
there in my great 
pain when you were 
a frog and impris- 
oned in the well.” 
Again and once again 
while they were on 
their way something 
cracked, and each 
time the king’s son 
thought the carriage 
was breaking; but i t  
was only the bands 
that  were spring- 
ing from the heart 
of Faithful Henry 
because his master 
was set free and was 
so happy. 

Figure 6 .  The tale of the Frog King,  typeset 
with quite narrow lines and with ‘ragged right’ 
margins. The breakpoints were optimally chosen 
under the assumption that the lines would 
be justijied; a somewhat dzfferent criterion of 
optimality would have been more appropriate for  
unjustified setting, ye t  the lines did turn out to 
be of approximately equal width. Quite a f e w  
hyphenations were found to be desirable, since 
this increases the number of spaces per line and 
aids justification, even though the penalty for 
hyphenation was increased from 50 to 5000 in 
this example. 

forced to stretch by the enormous factor 6.833. The only way to typeset that paragraph 
without such wide spaces is to leave it unjustified (unless, of course, we change the 
problem by altering the text or the line width or the minimum size of spaces). 

FURTHER APPLICATIONS 
Before we discuss the details of an optimizing algorithm, it is worthwhile to consider 
more fully how the basic primitives of boxes, glue, and penalties allow us to solve a 
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and were harpessed w s o  
with golden chains; 3.160 

and bqhind stood S.OII 

the young king’s ser- .W 
vant Fai tvul  Henry. 1.CW 

Faitvul  Henry had 3.100 
been so uqhappy e.esa 
when his maqter was *.ow 
changed into a frog, 1.66s 

Figure 7. This portion of the story in Figure 6 is the most difficult to 
handle, when we try  to justify the second-last paragraph using such 
narrow columns; even the optimum breakpoints result in wide spaces. 

wide variety of typesetting problems. Some of these applications are straightforward 
extensions of the simple ideas used in Figures 1 to 4, while others seem at first to be 
quite unrelated to the ordinary task of line breaking. 

Combining paragraphs 
If the desired line widths Z i  are not all the same, we might want to typeset two para- 

graphs with the second one starting in the list of line lengths where the first one leaves 
off. This can be done simply by treating the two paragraphs as one, i.e., appending the 
second to the first, assuming that each paragraph begins with an indentation and ends 
with finishing glue and a forced break as mentioned above. 

Patching 
Suppose that a paragraph starts on page 100 of some book and continues on to 

the next page, and suppose that we want to make a change to the first part of that 
paragraph. We want to be sure that the last line of the new page 100 will end at the 
right-hand margin just before the word that appears at the beginning of page 101, so 
that page 101 doesn’t have to be redone. It is easy to specify this condition in terms 
of our conventions, simply by forcing a line break (with penalty - 00) at the desired 
place, and discarding the subsequent text. The ability of the optimum-fit algorithm 
to ‘look ahead’ means that it will find a suitable way to patch page 100 whenever it 
is possible to do so. 

We can also force the altered part of the paragraph to have a certain number of 
lines, k, by using the following trick: Set the desired length Z k f l  of the (k+ 1)st line 
equal to some number 8 that is different from the length of any other line. Then an 
empty box of width 8 that occurs between two forced-break penalty items will have to 
be placed on line k + 1. 

Punctuation in the margins 
Some people prefer to have the right edge of their text look ‘solid’, by setting periods, 

commas, and other punctuation marks (including inserted hyphens) in the right-hand 
margin. For example, this practice is occasionally used in contemporary advertising. 
It is easy to get inserted hyphens into the margin: We simply let the width of the 
corresponding penalty item be zero. And it is almost as easy to do the same for periods 
and other symbols, by  putting every such character in a box of width zero and adding 
the actual symbol width to the glue that follows. If no break occurs at this glue, the 
accumulated width is the same as before; and if a break does occur, the line will be 
justified as if the period or other symbol were not present. 
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Avoiding ‘psychologically bad’ breaks 
Since computers don’t know how to think, at least not yet, it is reasonable to wonder 

if there aren’t some line breaks that a computer would choose but a human operator 
might not, if they somehow don’t seem right. This problem does not arise very often 
when straight text is being set, as in newspapers or novels, but it is quite common in 
technical material. For example, it is psychologically bad to break before ‘x’ or ‘y’ 
in the sentence 

A function of x is a rule that assigns a value y to every value of x. 

A computer will have no qualms about breaking anywhere unless it is told not to; but a 
human operator might well avoid bad breaks, perhaps even unconsciously. 

Psychologically bad breaks are not easy to define; we just know they are bad. When 
the eye journeys from the end of one line to the beginning of another, in the presence 
of a bad break, the second word often seems like an anticlimax, or isolated from 
its context. Imagine turning the page between the words ‘Chapter’ and ‘8’ in some 
sentence; you might well think that the compositor of the book you are reading should 
not have broken the text at such an illogical place. 

During the first year of experience with TEX, the authors began to notice occasional 
breaks that didn’t feel quite right, although the problem wasn’t felt to be severe enough 
to warrant corrective action. Finally, however, it became difficult to justify our claim 
that TEX has the world’s best line-breaking algorithm, when it would occasionally make 
breaks that were semantically annoying; for example, the preliminary TEX manual6 
has quite a few of these, and the first drafts of that manual were even worse. 

As time went on, the authors grew more and more sensitive to psychologically bad 
breaks, not only in the copy produced by TEX but also in other published literature, 
and it became desirable to test the hypothesis that computers were really to blame. 
Therefore a systematic investigation was made of the first 1000 line breaks in the ACM 
Journal of 1960 (which was composed manually by a Monotype operator), compared 
to the first 1000 line breaks in the ACMJournaZ of 1980 (which was typeset by one of 
the best commercially available systems for mathematics, developed by Penta Systems 
International). The final lines of paragraphs, and the lines preceding displays, were 
not considered to be line breaks, since they are forced; only the texts of articles were 
considered, not the bibliographies. A reader who wishes to try the same experiment 
should find that the 1000th break in 1960 occurred on page 67, while in 1980 it occurred 
on page 64. The results of this admittedly subjective procedure were a total of 

13 bad breaks in 1960, 
5 5  bad breaks in 1980. 

In other words, there was more than a four-fold increase, from about 1% to a quite 
noticeable 5 - 5 % !  Of course, this test is not absolutely conclusive, because the style of 
articles in the ACM Journal has not remained constant, but it strongly suggests that 
computer typesetting causes semantic degradation when it chooses breaks solely on the 
basis of visual criteria. 

Once this problem was identified, a systematic effort was made to purge all such 
breaks from the second edition of Knuth’s book Seminumerical AZgorithms’, which 
was the first large book to be typeset with TEX. It  is quite easy to get’the line- 
breaking algorithm to avoid certain breaks by simply prefixing the glue item by a 
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penalty with pi = 999, say; then the bad break is chosen only in an emergency, when 
there is no other good way to set the paragraph. I t  is possible to make the typist’s 
job reasonably easy by reserving a special symbol (e.g., &) to be used instead of a 
normal space between words whenever breaking is undesirable. Although this problem 
has rarely been discussed in the literature, the authors subsequently discovered that 
some typographers have a word for it: they call such spaces ‘auxiliary’. Thus there is 
a growing awareness of the problem. 

It may be useful to list the main kinds of contexts in which auxiliary spaces were 
used in Seminumerical AZgorithms, since that book ranges over a wide variety of tech- 
nical subjects. The following rules should prove to be helpful to compositors who are 
keyboarding technical manuscripts into a computer. 

1. Use auxiliary spaces in cross-references: 

Theorem&A Algorithm&B Chapter&3 Tablek4 Programs E and&F 

Note that no & appears after ‘Programs’ in the last example, since it would be 
quite all right to have ‘E and F’ at the beginning of a line. 

2. Use auxiliary spaces between a person’s forenames and between multiple sur- 
names: 

&.&I .&J. Matrix LuiskI. Trabb&Pardo Peter Van&Emde&Boas 

A recent trend to avoid spaces altogether between initials may be largely a reaction 
against typical computer line-breaking algorithms! Note that it seems better to 
hyphenate a name than to break it between words; e.g., ‘Don-’ and ‘ald E. Knuth’ 
is more tolerable than ‘Donald’ and ‘E. Knuth’. In a sense, rule 1 is a special 
case of rule 2, since we may regard ‘Theorem A’ as a name; another example is 
‘register&X’. 

3. Use auxiliary spaces for symbols in apposition with nouns: 

base&b dimensionkd function&f(x) string&s of lengthkl 

However, compare the last example with ‘stringks of length k o r  more’. 

4. Use auxiliary spaces for symbols in series: 

1,&2, or&3 a,&b, and&c l,&2, . . . ,&n 
5 .  Use auxiliary spaces for symbols as tightly-bound objects of prepositions: 

of&x from 0 to&l increase z by&l in common with&m 

This does not apply with compound objects: For example, type ‘of u&and&v’. 

in words: 
6. Use auxiliary spaces to avoid breaking up mathematical phrases that are rendered 

equals&n less thanks mod&2 modulo&p‘ (given&X) 

Also type ‘If &is. . .’, ‘when xkgrows’. Compare ‘is&15’, with ‘is 15ktimes the 
height’; and compare ‘for all largekn’ with ‘for all nkgreater than&n,,’. 

7 .  Use auxiliary spaces when enumerating cases: 

(b)&Show that f(x) is (l)&continuous; (2)&bounded. 
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It  would be nice to boil these seven rules down into one or two, and it would be even 
nicer if the rules could be automated so that keyboarding could be done without them; 
but subtle semantic considerations seem to be involved in many of these instances. 
Most examples of psychologically bad breaks seem to occur when a single symbol or a 
short group of symbols appears just before or after the break; one could do reasonably 
well with an automatic scheme if it would associate large penalties with a break just 
before a short non-word, and medium penalties with a break just after a short non- 
word. Here ‘short non-word’ means a sequence of symbols that is not very long, yet long 
enough to include instances like ‘exercise&l S(b)’, ‘length&~2~”, ‘order&n/2’ followed by 
punctuation marks; one should not simply consider patterns that have only one or two 
symbols. On the other hand it is not so offensive to break before or after fairly long 
sequences of symbols; e.g., ‘exercise 4.3.2-15’ needs no auxiliary space. 

Many books on composition recommend against breaking just before the final word 
of a paragraph, especially if that word is short; this can, of course, be done by using 
an auxiliary space just before that last word, and the computer could insert this 
automatically. Some books also give recommendations analogous to rule 2 above, 
saying that compositors should try not to break lines in the middle of a person’s 
name. But there is apparently only one book that addresses the other issues of psycho- 
logically bad breaks, namely a nineteenth-century French manual by A. Frey”, where 
the following examples of undesirable breaks are mentioned (vol. 1, p. 110): 

Henri&IV M.&Colin le’&sept. art.&25 20&fr. 

I t  seems to be time to resurrect such old traditions of fine printing. 
Recent experience of the authors indicates that it is not a substantial additional 

burden to insert auxiliary spaces when entering a manuscript into a computer. The 
careful use of such spaces may in fact lead to greater job satisfaction on the part of 
the keyboard operator, since the quality of the output can be noticeably improved 
with comparatively little work. I t  is comforting at times to know that the machine 
needs your help. 

Author lines 
Most of the review notices published in Mathematical Reviews are signed with the 

reviewer’s name and address, and this information is typeset flush right, i.e., at the 
right-hand margin. If there is sufficient space to put such a name and address at the 
right of the final line of the paragraph, the publishers can save space, and at the same 
time the results look better because there are no strange gaps on the page. During 
recent years the composition software used by the American Mathematical Society 
was unable to do this operation, but the amount of money saved on paper made it 
economical for them to pay someone to move the reviewer-name lines up by hand 
wherever possible, applying scissors and (real) glue to the computer output. 

This is a case where the name and address fit in nicely 
with the review. A. Reviewer (Ann Arbor, Mich.) 

But sometimes an extra line must be added. 
N. Bourbaki (Paris) Figure 8. The M R  problem. 



1138  DONALD E. KNUTH AND MICHAEL F. PLASS 

Let us say that the ‘MR problem’ is to typeset the contents of a given box flush right 
at the end of a given paragraph, with a space of at least w between the paragraph and 
the box if they occur on the same line. This problem can be solved entirely in terms 
of the box/glue/penalty primitives, as follows: 

(text of the given paragraph) 
penalty(0,00, 0) 
glue(0,100000,0) 
penalty(0, 50, 0) 
g w w ,  070) 
box(0) 
penalty(0, co, 0) 
glue(0,100000,0) 
(the given box) 
penalty(0, - m,0) 

The final penalty of - co forces the final line break with the given box flush right; the 
two penalties of + co are used to inhibit breaking at the following glue items. Thus, 
the above sequence reduces to two cases: whether or not to break at the penalty of 50. 
If a break is taken there, the ‘glue(w, 0 ,O) ’  disappears, according to our rule that each 
line begins with a box; the text of the paragraph preceding the penalty of 50 will be 
followed by  ‘glue(0, 100000, O)’, which will stretch to fill the line as if the paragraph 
had ended normally, and the given box on the final line will similarly be preceded by 
‘glue(0, 100000,O)’ to fill the gap at the left. On the other hand if no break occurs at 
the penalty of 50, the net effect is to have the glues added all together, producing 

(text of the given paragraph) 
glue(w, 200000,O) 
(the given box) 

so that the space between the paragraph and the box is w or more. Whether the break is 
chosen or not, the badness of the two final lines or the final line will be essentially zero, 
because so much stretchability is present. Thus the relative cost differential separating 
the two alternatives is almost entirely due to the penalty of 50. The  optimum-fit 
algorithm will choose the better alternative, based on the various possibilities it has 
for setting the given paragraph; it might even make the given paragraph a little bit 
tighter than its usual setting, if this words out best. 

Ragged right margins 
We observed in Figure 6 that an optimum line-breaking algorithm intended for 

justified text does a fairly good job at making lines of nearly equal length even when 
the lines aren’t justified afterwards. However, it is not hard to construct examples 
in which the justification-oriented method makes bad decisions, since the amount of 
deviation in line width is weighted by the amount of stretchability or shrinkability 
that is present. A line containing many words, and therefore containing many spaces 
between words, will not be considered problematical by the justification criteria even 
if it is rather short or rather long, because there is enough glue present to stretch or 
shrink gracefully to the correct size. Conversely, when there are few words in a line, the 
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algorithm will take pains to avoid comparatively small deviations. This is illustrated 
in Figure 5 ,  which actually reads better than the corresponding paragraph in Figure 6 
(except for the word that sticks out on the first line); hyphens were inserted into the 
paragraph of Figure 6 in order to create more interword space for justification. 

Although the box/glue/penalty model appears at first glance to be oriented solely to 
the problem of justified text, we shall now see that it is powerful enough to be adapted 
to the analogous problem of unjustified typesetting: If the spaces between words are 
handled in the right way, we can make things work out so that each line has the same 
amount of stretchability, no matter how many words are on that line. The idea is to 
let spaces between words be represented by the sequence 

glue(0,18,0) 
penalty(0, 0 ,O)  
glue(6, -18,O) 

instead of the ‘glue(6,3,2)’ we used for justified typesetting. We may assume that there 
is no break at the ‘glue(O,18,0)’ in the sequence, because it will always be at least as 
good for the algorithm to break at the ‘penalty(0, 0, O)’, when 18 units of stretchability 
are present. If a break occurs at the penalty, there will be a stretchability of 18 units 
on the line, and the ‘glue(6, -18,O)’ will be discarded after the break so that the next 
line will begin flush left. On the other hand if no break occurs, the net effect is to have 
glue(6,0,0), representing a normal space with no stretching or shrinking. 

Note that the stretchability of -18 in the second glue item has no physical signifi- 
cance, but it nicely cancels out the stretchability of +18 in the first glue item. Negative 
stretchability has several interesting applications, so the reader should study this 
example carefully before proceeding to the more elaborate constructions below. 

Optional hyphenations in unjustified text can be specified in a similar way; instead 
of using ‘penalty(6,50,1)’ for an optional 6-unit hyphen having a penalty of 50, we 
can use the sequence 

penalty(0, 00 , 0) 
glue(0,18,0) 
penalty(6,500,1) 
glue(0, -18,O). 

The penalty has been increased here from 50 to 500, since hyphenations are not as 
desirable in unjustified text. After the breakpoints have been chosen using the above 
sequences for spaces and for optional hyphens, the individual lines should not actually 
be justified, since a hyphen inserted by the ‘penalty(6,500,1)’ would otherwise appear 
at the right margin. 

I t  is not difficult to prove that this approach to ragged-right typesetting will never 
lead to words that ‘stick out’ in the sense mentioned above; the total demerits are 
reduced whenever a word that sticks out is moved to the following line. 

Centered text 
Occasionally we want to take some text that is too long to fit on one line and break 

it into approximately equal-size parts, centering the parts on individual lines. This is 
most often done when setting titles or captions, but it can also be applied to the text 
of a paragraph, as shown in Figure 9. 
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In olden times when wishing still helped one, there lived a king 
whose daughters were all beautiful; and the youngest was 

so beautiful that the sun itself, which has seen so much, was 
astonished whenever it shone in her face. Close by the king’s castle 
lay a great dark forest, and under an old lime-tree in the forest was 

a well, and when the day was very warm, the king’s child went 
out into the forest and sat down by the side of the cool fountain; 
and when she was bored she took a golden ball, and threw it up 
on high and caught it; and this ball was her favorite plaything. 

Figure 9 .  ‘Ragged-centered‘ text:  The optimum-$t algorithm will produce special efJects like this, 
when appropriate combinations of box/gluelpenalty items are used for  the spaces between words. 

Boxes, glue, and penalties can perform this operation, in the following way: (a) At 
the beginning of the paragraph, use ‘glue(O,l8,0)’ instead of an indentation. (b) For 
each space between words in the paragraph, use the sequence 

glue(0,18,0) 
penalty(O,O, 0) 
glue(6, -36’0) 
box(0) 
penalty(O,cc, 0) 
glue(0,18,0). 

(c) End the paragraph with the sequence 

glue(0,18,0) 
penalty(0, - CO, 0). 

The tricky part of this method is part (b), which ensures that an optional break 
a t  the ‘penalty(O,O,O)’ puts stretchability of 18 units at the end of one line and at 
the beginning of the next. If no break occurs, the net effect will be glue(0,18,0)+ 
glue(6, -36,0)+glue(O, 18,O) = glue(6,0,0), a fixed space of 6 units. The ‘box(0)’ 
contains no text and occupies no space; its function is to keep the ‘glue(O,18,0)’ from 
disappearing at the beginning of a line. The ‘penalty(0, 0 , O ) ’  item could be replaced 
by other penalties, to represent breakpoints that are more or less desirable. However, 
this technique cannot be used together with optional hyphenation, since our box/glue/ 
penalty model is incapable of inserting optional hyphens anywhere except at the right 
margin when lines are justified. 

The construction used here essentially minimizes the maximum gap between the 
margins and the text on any line; and subject to that minimum it essentially minimizes 
the maximum gap on the remaining lines; and so forth. The reason is that our defini- 
tions of ‘badness’ and ‘demerits’ reduce in this case so that the sum of demerits for 
any choice of breakpoints is approximately proportional to the sum of the sixth powers 
of the individual gaps. 

ALGOL-like languages 
One of the most difficult tasks in technical typesetting is to get computer programs 

to look right. In addition to the complications of mathematical formulas and a variety 
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const n = 10000; 
var sieve, primes : 

setof2..n; 
next, j : integer; 

begin { initialize } 
sieve := [2. . n]; 
primes := [ I ;  
nezt := 2; 
repeat { find next 

prime } 
while not (nezt in 

sieve) do 

succ (next); 

primes + [nezt]; 

next := 

primes := 

j := next; 
while j <= n do 

begin sieve := 

j := j + next 
end 

{ eliminate } 

sieve - b]; 

until sieve = [ I  
end. 

eonst n = 10000; 
var sieve, primes : set of 2 .  . n; 

next, j : integer; 
begin { initialize } 
sieve := [2. . n]; primes := [ 1; next := 2; 
repeat { find next prime } 

while not(nezt in sieve) do next := succ(next); 
primes := primes + [next]; j := next; 
while j <= n do { eliminate } 
begin sieve := sieve - b]; j := j + nezt 
end 

until sieve = [ ]  
end. 

Figure 10. These two settings of a sample P A S C A L  program 
were made from identical input specifications in the 
boxlgluelpenalty model; in the jirst case the lines were set 100 
points wide, and in the second case the width was 250points. Al l  of 
the line-breaking and identation was produced automatically by 
the optimum-fit algorithm, which has no specific knowledge of 
P A S C A L .  Compilation of the P A S C A L  source code into boxes, 
glue, and penalties was done mechanically. 

of typestyles and spacing conventions, it is important to indent the lines suitably 
in order to display the program structure. Sometimes a single statement must be 
broken across several lines; sometimes a number of short statements should be grouped 
together on a single line. Authors who attempt to publish programs in journals that 
are not accustomed to computer science material soon discover that very few printing 
establishments have the expertise necessary to handle ALGOL-like languages in a 
satisfactory way. 
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Once again, the concepts of boxes, glue, and penalties come to the rescue: I t  turns out 
that our line-breaking methods developed for ordinary text can be used without change 
to do the typesetting of programs in ALGOL-like languages. For example, Figure 10 
shows a typical program taken from the PASCAL manual’’ that has been typeset 
assuming two different column widths. Although these two settings of the program do 
not look very much alike, they both were made from exactly the same input, specified 
in terms of boxes, glue, and penalties; the only difference was the specification of line 
width. (The input text in this example was prepared by a computer program called 
BLAISEI2, which will translate any PASCAL source text into a TEX file that can be 
incorporated within other documents.) 

The box/glue/penalty specifications that lead to Figure 10 involve constructions 
similar to those we have seen above, but with some new twists; it will be sufficient for 
our purposes merely to sketch the ideas instead of dwelling on the details. One key 
point is that the breaks are chosen by the minimum-demerits criteria we have been 
discussing, but the lines are not justified afterwards (i.e., the glue does not actually 
stretch or shrink). The reason is that relations and assignment statements are processed 
by TEX’S normal ‘math mode’, which allows line breaks to occur in various places but 
without any special constructions particular to this application, so that justification 
would have the undesirable effect of putting all such breaks at the right margin. The 
fact that justification is suppressed actually turns out to be an advantage in this case, 
since it means that we can insert glue stretching wherever we like, within a line, if it 
affects the ‘badness’ formula in a desirable way. 

Each line in the wider setting of Figure 10 is actually a ‘paragraph’ by itself, so it 
is only the narrower setting that shows the line-breaking mechanism at work. Every 
‘paragraph’ has a specified amount of indentation for its first line, corresponding to its 
position in the program, as a given number t of ‘tab’ units; the paragraph is also given 
a hanging indentation of t + 2  tab units. This means that all lines after the first are 
required to be two tabs narrower than the first line, and they are shifted two tabs to 
the right with respect to that line. In some cases (e.g., those lines beginning with ‘var’ 
or ‘while’) the offset is three tabs instead of two. 

The paragraph begins with ‘glue(0, 100000, O)’, which has the effect of providing 
enough stretchability that the line-breaking algorithm will not wince too much at 
breaks that do not square perfectly with the right margin, at least not on the first line. 
Special breaks are inserted at places where TEX would not normally break in math 
mode; e.g., the sequence 

penalty(0, co , 0) 
glue(0,lOOOOO,O) 
penalty(0,50,0) 
glue(0, -100000,O) 
box(0) 
penalty(O,oo, 0) 
glue(0,lOOOOO,O) 

has been inserted just before ‘primes’ in the v a r  declaration. This sequence allows 
a break with penalty 50 to the next line, which begins with plenty of stretchability. 
A similar construction is used between assignment statements, for example between 
‘sieve : = [2 . .  n];’ and ‘primes : = []’, where the sequence is 
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penalty(O,oo, 0) 
glue(0,100000,0) 
penalty(0, 0 , O )  
glue(6 + 2w, -100000,O) 
box(0) 
penalty(0, 00, 0) 
glue( -2w, 100000,O); 

here w is the width of a tab unit. If a break occurs, the following line begins with 
‘glue( -2w, 100000, O)’, which undoes the effect of the hanging indentation and effec- 
tively restores the state at the beginning of a paragraph. If no break occurs, the net 
effect is ‘glue(6,lOOOOO,O)’, a normal space. 

No automatic system can hope to find the best breaks in programs, since an under- 
standing of the semantics will indicate that certain breaks make the program clearer 
and reveal its symmetries better. However, dozens of experiments on a wide variety 
of PASCAL source texts have shown that this approach is surprisingly effective; fewer 
than 1% of the line-breaking decisions have been overridden by authors of the 
programs in order to provide additional clarity. 

A complex index 
The final application of line breaking that we shall study is the most difficult one 

that has so far been encountered by the authors; it was solved only after acquiring more 
than two years of experience with more straightforward line-breaking tasks, since the 
full power of the box/glue/penalty primitives was not immediately apparent. The task 
is illustrated in Figure 11, which shows excerpts from a ‘Key Index’ in Mathematical 
Reviews. Such an index now appears at the end of each volume, together with an 
‘Author Index’ that has a similar format. 

As in Figure 10, the examples in Figure 1 1 were generated by the same source input 
that was typeset using different line widths, in order to indicate the various possibilities 
of breakpoints. Each entry in the index consists of two parts, the name part and the 
reference part ,  both of which might be too long to fit on a single line. If line breaks 
occur in the name part, the individual lines are to be set with a ragged right margin, 
but breaks in the reference part are to produce lines with a ragged left margin. The 
two parts are separated by leaders, a row of dots that expands to fill the space between 
them; leaders are introduced by a slight generalization of glue that typesets copies 
of a given box into a given space, instead of leaving that space blank. A hanging 
indentation is applied to all lines but the first, so that the first line of each entry is 
readily identifiable. One of the goals in breaking such entries is to minimize the white 
space that appears in ragged-right or ragged-left lines. A subsidiary goal is to minimize 
the number of lines that contain the reference part; for example, if it is possible to fit 
all of the references on one line, the line-breaking algorithm should do so. The latter 
event might mean that a break occurs after the leaders, with the references starting 
on a new line; in such a case the leaders should stop a fixed distance w 1  from the right 
margin. Furthermore, the ragged-right lines should all be at least a fixed distance w 2  
from the right margin, so that there is no chance of confusing part of the name with 
part of the reference material. The individual boxes to be replicated in the leaders 
are w3 units wide. 
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ACM Symposium on Principles of Programming 
Languages, Third (Atlanta, Ga., 1976), selected 
papers ..................................... .*1858 

ACM Symposium on Theory of Computing, Eighth 
Annual (Hershey, Pa., 1976) ....... .1879, 4813, 
5414, 6918, 6936, 6937, 6946, 6951, 6970, 7619, 
9605, 10148, 11676, 11687, 11692, 11710, 13869 

Software .................................. See t1858 

ACM Symposium on Principles of 
Programming Languages, Third 
(Atlanta, Ga., 1976), selected papers 
................................. *1858 

ACM Symposium on Theory of 
Computing, Eighth Annual 
(Hershey, Pa., 1976) .......... 

1879, 4813, 5414, 6918, 6936, 6937, 
6946, 6951, 6970, 7619, 9605, 10148, 

11676, 11687, 11692, 11710, 13869 
Software ...................... See *1858 

ACM Symposium 
on Principles of 
Programming 
Languages, Third 
(Atlanta, Ga., 1976), 
selected papers .... *1858 

ACM Symposium on 
Theory of Computing, 
Eighth Annual 
(Hershey, Pa., 1976) 
........ 1879, 4813, 5414, 

6918, 6936, 6937, 6946, 
6951, 6970, 7619, 9605, 

10148, 11676, 11687, 
11692, 11710, 13869 

Software See *1858 

Figure 1 1 .  These three extracts f rom a ‘ K e y  Index’ were all 
typset f rom identical input, with respective column widths of 
225 points, 175 points, and 125 points. Note the combination 
of ragged right and ragged left setting, and the ‘dot leaders’. ......... 

The ground rules are illustrated in Figure 1 1 ,  where there is a hanging indentation 
of 27 units, and w1 = 45, w2 = 9, w 3  =7-2; the digits are 9 units wide, and the 
respective column widths are 405 units, 3 15 units, and 225 units. The entry for ‘Theory 
of Computing’ shows three possibilities for the leader dots: They can share a line with 
the end of the name part and the beginning of the reference part, or they can end a 
line before the reference part or begin a line after the name part. 

Here is how all this can be encoded with boxes, glue, and penalties: (a) Each blank 
space in the name part is represented by the sequence 

penalty(0, cc, 0) 

penalty(O,O, 0) 
glue(6-w2, -18,2) 

g w w , ,  1890) 

which yields ragged right margins and spaces that can shrink from 6 units to 4 units 
if necessary. (b) The transition between name part and reference part is represented 
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by sequence (a) followed by 
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box(0) 
penalty(0, co , 0) 
leaders(3w3, 100000,3w,) 
g w w ,  7 070) 
penalty(0, 0,O) 
glue(-ww,, -18,O) 
box(0) 
penalty(0, co, 0) 
glue(0,18,0). 

(c) Each blank space in the reference part is represented by the sequence 

penalty(0,999,0) 
glue(6, - 18,2) 
box(0) 
penalty(0, 00 , 0) 
glue(0,18, O), 

which yields ragged left margins and 6-unit to 4-unit spaces. 
Parts (a) and (c) of this construction are analogous to things we have seen before; 

the 999-point penalties in (c) tend to minimize the total number of lines occupied by 
the reference part. The most interesting aspect of this construction is the transition 
sequence (b), where there are four possibilities: If no line breaks occur in (b), the net 
result is 

(name part) glue(6,0,2) (leaders) (reference part), 

which allows leader dots to appear between the name and reference parts on the current 
line. If a line break occurs before the leaders, the net result is 

(name part) glue(6,0,2) 
(leaders) (reference part), 

so that we have a break essentially like that after a blank space in the name part, 
and the dot leaders begin the following line. If a line break occurs after the leaders, 
the net result is 

(name part) glue(6,0,2) (leaders) glue(wl, 0,O) 
glue(0,18,0) (reference part), 

so that we have a break essentially like that after a blank space in the reference part but 
without the penalty of 999; the leaders end w 1  units from the right margin. Finally, 
if breaks occur both before and after the leaders in (b), we have a situation that always 
has more demerits than the alternative of breaking only before the leaders. 

When the choice of breakpoints leaves room for at least 3w3 units of leaders, we 
are sure to have at least two dots, but we might not have three dots since leader dots 
on different lines are aligned with each other. The glue in other blank spaces on the 
line with the leaders will shrink if there is less than 3w3 of space for the leaders, and 



1146 DONALD E. KNUTH AND MICHAEL F. PLASS 

this tends to make it more likely that the leader dots will not disappear altogether; 
however, in the worst case the space for leaders will shrink to zero, so there might 
not be any dots visible. I t  would be possible to ensure that all the leaders contain at 
least two dots, by simply setting the shrink component of the leader item in (b) to 
zero. This would improve the appearance of the resulting output; but unfortunately 
i t  would also increase the length of the author indexes by about 15 per cent, and such 
an expense would probably be prohibitive. 

A preliminary version of this construction has been used with TEX to prepare the 
indexes of Mathematical Reviews since November, 1979. However, the items ‘box(0) 
penalty(0, co, 0)’ were left out of (b), for compatibility with earlier indexes prepared by 
other typesetting software; this means that the leaders disappear completely whenever 
a break occurs just before them, and the resulting indexes have unfortunate gaps of 
white space that spoil their appearance. 

A N  ALGEBRAIC APPROACH 
The examples we have just seen show that boxes, glue, and penalties are quite versatile 
primitives that allow a user to obtain a wide variety of effects without extending the 
basic operations needed for ordinary typesetting. However, some of the constructions 
may have seemed like ‘magic’; they work, but it isn’t clear how they were ever conceived 
in the first place. We shall now study a fairly systematic way to deal with these 
primitives in order to assess their full potentiality; this brief discussion is independent 
of the remainder of the paper and can be omitted. 

In the first place it is clear that 

box(w) box(w’) = box(w + w’), 

if we ignore the contents of the boxes and consider only the widths; only the widths 
enter into the line-breaking criteria. This formula says that any two consecutive boxes 
can be replaced by a single box without affecting the choice of breakpoints, since breaks 
do not occur at box items. Similarly it is easy to verify that 

glue(w, y, z )  glue(w’, y’, z’) = glue(w + w’, y + y’, z + z‘), 

since there will be no break at glue(w’,y‘,z’), and since a break at glue(w,y,z) is 
equivalent to a break at glue(w+w’,y+y’,z+z’). 

Under certain circumstances we can also combine two adjacent penalty items into a 
single one; for example, if - 00 < p, p’< + 00 we have 

penalty(w,p,f) penalty(w,p’,f) = penalty(w, min(p,p’),f) 

with respect to any optimal choice of breakpoints, since there are fewer demerits asso- 
ciated with the smaller penalty. However, it is not always possible to replace the general 
sequence ‘penalty(w,p, f) penalty(w’,p’,f’)’ by a single penalty item. 

We can assume without loss of generality that all box items are immediately followed 
by a sequence of the form ‘penalty(O,oo, 0) glue(w, y, z)’. For if the box is followed by 
another box, we can combine the two; if it is followed by a penalty item with p < 00, 

we can insert ‘penalty(0, CC, 0) glue(0, 0,O)’; if it is followed by ‘penalty(w, co ,f)’ we can 
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assume that w = f = 0 and thgt the following item is glue; and if the box is followed 
by glue, we can insert ‘penalty(0, 00, 0) glue(0, 0, O)penalty(O, 0,O)’. Furthermore we can 
delete any penalty item with p = if it is not immediately preceded by a box item. 

Thus, any sequence of box/glue/penalty items can be converted into a ‘normal form’, 
where each box is followed by a penalty of CO, each penalty is followed by glue, and 
each glue is either followed by a penalty < co or by a box. We assume that there is 
only one penalty - 00, and that it is the final item, since a forced line break effectively 
separates a longer sequence into independent parts. It follows that the normal-form 
sequences can be written 

XIXz.. . X,penalty(w, -00, j-,) 

where each Xi is a sequence of items having the form 

box(w)penalty(O, 00, 0) glue(w’,y, z) 

or the form 

penalty(v, P,f 1 glue(w, YJ z). 

Let us use the notation bpg(w+w’,y,z) for the first of these two forms, noting 
that it is a function of w+wr  rather than of w and w‘ separately; and let us write 
pg(v,p,f, w,y, z)  for X’s of the second form. We can assume that the sequence of X’s 
contains no two bpg’s in a row, since 

bpg(w,y,z) bpg(w’,y’,z’) = bpg(w+w’,y+y’,z+z‘). 

Familiarity with this algebra of boxes, glue, and penalties makes it a fairly simple 
matter to invent constructions for special applications like those listed above, whenever 
such constructions are possible. For example, let us consider a generalization of the 
problems arising in ragged-right, ragged-left, and ragged-centered text: We wish to 
specify on optional break between words such that if no break occurs we will have 
the sequence 

(end of textl) glue(wl,yl, zl) {beginning of text2) 

on one line, while if a break does occur we will have 

(end Of text 1) 9 y2 J z 2 )  p J f )  
glue(w3,y3, z3) (beginning of text,) 

on two lines. A consideration of normal forms shows that the most general thing we 
can do is to insert the sequence 

bpg(wJy> z, pg(w,>P,f, w:Y: z‘) bpg(w’:y’: z r f )  

between text, and textz, where no additional text is associated with the two inserted 
bpg’s. Our job reduces therefore to determining appropriate values of w, y, z, w’, y’, z’, 
w”, y”, zff, and these can be obtained immediately by solving the equations 

W+WwI+W” = wl,  y+yf+yrr  =y1, Z + z r + X ’ I  = z,; 

w’f = w 39 Y” = Y3, zrf = 273. 

w = w2, Y =y2, z = z,; 
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Once a construction has been found in this way, it can be simplified by undoing 
the process we have used to derive normal forms and by using other properties of 
box/glue/penalty algebra. For example, we can always delete the penalty co item in 
a sequence like 

if y 2 0 and z 2 0 and p < 0, since a break at the glue is always worse than a break 
at the penalty p .  

INTRODUCTION T O  THE ALGORITHM 

The general ideas underlying the optimum-fit algorithm for line breaking can probably 
be understood best by considering an example. Figure 12 repeats the paragraph of 
Figure 4(c) and includes little vertical marks to indicate ‘feasible breakpoints’ found 
by the algorithm. A feasible breakpoint is a place where the text of the paragraph from 
the beginning to this point can be broken into lines whose adjustment ratio does not 
exceed a given tolerance; in the case of Figure 12, this tolerance was taken to be unity. 
Thus, for example, there is a tiny mark after ‘fountain;’ since there is a way to set the 
paragraph up to this point with ‘fountain;’ at the end of the 7th line and with none of 
lines 1 to 7 having a badness exceeding 100 (cf. Figure 4(a)). 

The algorithm proceeds by locating all of the feasible breakpoints and remembering 
the best way to get to each one, in the sense of fewest total demerits. This is done 
by keeping a list of ‘active’ breakpoints, representing all of the feasible breakpoints 
that might be a candidate for future breaks. Whenever a potential breakpoint b is 
encountered, the algorithm tests to see if there is any active breakpoint a such that 
the line from a to b has an acceptable adjustment ratio. If so, b is a feasible breakpoint 
and it is appended to the active list. The  algorithm also remembers the identity of 
the breakpoint a that minimizes the total demerits, when the total is computed from 
the beginning of the paragraph, through a, to 6 .  When an active breakpoint a is 
encountered for which the line from a to b has an adjustment ratio less than -1 (i.e., 
when the line can’t be shrunk to fit the desired length), breakpoint a is removed from 
the active list. Since the size of the active list is essentially bounded by the maximum 
number of words per line, the running time of the algorithm is bounded by this 
quantity (which usually is small) times the number of potential breakpoints. 

For example, when the algorithm begins to work on the paragraph in Figure 12, 
there is only one active breakpoint, representing the beginning of the first line. I t  is 
infeasible to have a line starting there and ending at ‘In’, or ‘olden’, . . . , or ‘lived’, 
since the glue between words does not accumulate enough stretchability in such short 
segments of the text; but after the next word ‘a’ is encountered, a feasible breakpoint 
is found. Now there are two active breakpoints, the original one and the new one. 
After the next word ‘king’, there are three active breakpoints; but after the next word 
‘whose’, the algorithm sees that it is impossible to squeeze all of the text from the 
beginning up to ‘whose’ on one line, so the initial breakpoint becomes inactive and 
only two active ones remain. 

Skipping ahead, let us consider what happens when the algorithm considers the 
potential break after ‘fountain;’. At this stage there are eight active breakpoints, 
following the respective text boxes for ‘child’, ‘went’, ‘out’, ‘side’, ‘of‘, ‘the’, ‘cool’, 
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I In olden times when wisung still helped one, there lived a’ 
king‘ whose daughters were all beaqtqul; and the young@ wad .a46 

sd bea\tiJul that the sun itgelf, which has seen so much, wad .6sT 

asto4shed wheqper it shone in her face. Close by the king’$ .s14 
castle‘ lay a great dark forpt, and uqler an old lim%tree in’ the‘ .OaT 

fo?’st‘ wad d well, and when the day was very warm, the‘ king’s‘ .I73 
child went’ out’ into the for-st and sat down by the side‘ of thd -346 

cool’ fouqtain: and when she was bored she took a golden’ ball,’ .aTs 

and threw‘ it‘ up’ on’ high and caught it; and this ball wad he? .693 

favorjtd pla&hing. .om 

Figure 12. Tiny vertical marks show ‘feasible breakpoints’ where it is possible to break 
in such a way  that no spaces need to stretch more than their given stretchability. 

and ‘foun-’. The  line starting after ‘child’ and ending with ‘fountain;’ would be too 
long to fit, so ‘child’ becomes inactive. Feasible lines are found from ‘went’ or ‘out’ 
to ‘fountain;’ and the demerits of those lines are 276 and 182, respectively; however, 
the line from ‘went’ actually turns out to be preferable, since there are substantially 
fewer total demerits from the beginning of the paragraph to ‘went’ than to ‘out’. Thus, 
‘fountain;’ becomes a new active breakpoint. The  algorithm stores a pointer back from 
‘fountain;’ to ‘went’, meaning that the best way to get to a break after ‘fountain;’ is 
to start with the best way to get to a break after ‘went’. 

The computation of this algorithm can be represented pictorially by means of the 
network in Figure 13 ,  which shows all of the feasible breakpoints together with the 
number of demerits charged for each feasible line between them. The  object of the 
algorithm is to compute the shortest path from the top of Figure 13  to the bottom, 
using the demerit numbers as the ‘distances’ corresponding to individual parts of the 
path. In this sense, the job of optimal line breaking is essentially a special case of the 
problem of finding shortest paths in an acyclic network; the line-breaking algorithm is 
slightly more complex only because it must construct the network at the same time as 
it is finding the shortest path. 

Notice that the best-fit algorithm can be described very easily in terms of a network 
like Figure 13: it is the algorithm that simply chooses the shortest continuation at every 
step. And the first-fit algorithm can be characterized as the method of always taking 
the leftmost branch having a negative adjustment ratio (unless it leads to a hyphen, 
in which case the rightmost non-hyphenated branch is chosen whenever there is a 
feasible one). From these considerations we can readily understand why the optimum- 
fit algorithm tends to do a much better job. 

Sometimes there is no way to continue from one feasible breakpoint to any other. 
This situation doesn’t occur in Figure 13,  but it would be present below the word ‘so’ 
if we had not permitted hyphenation of ‘astonished’. In such cases the first-fit and 
best-fit algorithms must resort to infeasible lines, while the optimum-fit algorithm can 
usually find another way through the maze. 

On the other hand, some paragraphs are inherently difficult, and there is no way to 
break them into feasible lines. In such cases the algorithm we have described will find 
that its active list dwindles until eventually there is no activity left; what should be 
done in such a case? It  would be possible to start over with a more tolerant attitude 
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Figure 13. This network shows the feasible breakpoints and the number of demerits 
charged when going from one breakpoint to another. The ‘shortest path’from the top to 
the bottom corresponds to the best way to typeset the paragraph, if w e  regard the demerits 
as distances. 

toward infeasibility (a higher threshold value for the adjustment ratios). Alternatively, 
TEX takes the attitude that the user wants to make some manual adjustment when 
there is no way to meet the specified criteria, so the active list is forcibly prevented from 
becoming empty by simply declaring a breakpoint to be feasible if it would otherwise 
leave the active list empty. This results in an overset line and an error message that 
encourages the user to take corrective action. 

Figure 14 shows what happens when the algorithm allows quite loose lines to be 
feasible; in this case a line is considered to be infeasible only if its adjustment ratio 
exceeds 10 (so that there would be more than two ems of space between words). 
Such a setting of the tolerances would be used by people who don’t want to make 
manual adjustments to paragraphs that cannot be set well. The tiny marks rhat 
indicate feasible breakpoints have varying lengths in this illustration, with longer marks 



BREAKING PARAGRAPHS INTO LINES 1 1 5 1  

' In olden times when wiswng still helped one,' there lived a' 
kind whose daughters were all beau&ijful; and the young& wad .*A6 

so' bea<ti;ful' that' the sun i$elf,' which' has' seen so much,' wad .66T 

astonjshed whedever it' shone in her' face.' Close' by' the' king'$ .614 

castle' lay' 8 great' dark' forkst,' and' udder' ad old lim%,ree' id the' .OIT 

fo?'st' wad a' well,' and' when the day wad ved  warm,' the' king'$ . I T S  

child went' out' into the forkst and sat' down' by' the' side' of thd .346 

cool' foudtain; and' when she wad bored she' tooli a' golden' ball,' .lTK 

and thred it' up' on' high' and caught! it: and thid balr wad he? .603 

favo4td play$hing. .ooa 

Figure 14. When the tolerance is raised to 10 times the stretchability, more breakpoints 
become feasible, and there are many more possibilities to explore. 

indicating places that can be reached via better paths; the tiny dots are for breakpoints 
that are just barely feasible. Notice that all of the potential breakpoints in Figure 14 
are marked, except for a few in the first two lines; so there are considerably more 
feasible breakpoints here than there were in Figure 12, and the network corresponding 
to Figure 13 will be much larger. There are 836,272,858 feasible ways to set the para- 
graph when such wide spaces are tolerated, compared to only 81 ways in Figure 12. 
However, the number of active nodes will not be significantly bigger in this case than 
it was in Figure 12, because it is limited by the length of a line, so the algorithm 
will not run too much more slowly even though its tolerance has been raised and the 
number of possible settings has increased enormously. For example, after 'fountain;' 
there are now 17 active breakpoints instead of the 8 present before, so the processing 
takes only about twice as long although huge numbers of additional possibilities are 
being taken into account. 

When the threshold allows wide spacing, the algorithm is almost certain to find a 
feasible solution, and it will report no errors to the user even though some rather loose 
lines may have been necessary. The  user who wants such error messages should set the 
tolerance lower; this not only gives warnings when corrective action is needed, it also 
improves the algorithm's efficiency. 

One of the important things to note about Figure 14 is that breakpoints can become 
feasible in completely different ways, leading up to different numbers of lines before the 
breakpoint. For example, the word 'seen' is feasible both at the end of line 3:  

'In olden. . . lived/a . . . young-/est . . . seen' 

and at the end of line 4: 

'In olden . . . helped/one, . . . were/all . . . beau-/tiful . . . seen', 

although 'seen' was not a feasible break at all in Figure 12. The  breaks that put 'seen' 
at the end of line 3 have substantially fewer demerits than those putting it on line 4 
(approximately 1.68 x lo6 versus 1-28 x lo1'), so the algorithm will remember only 
the former possibility. This is an application of the dynamic-programming 'principle 
of optimality', which is responsible for the efficiency of our algorithm4: the optimum 
breakpoints of a paragraph are always optimum for the subparagraphs they create. 
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The area of a 
circle is a mean propor- 

tional between any two regular 
and similar polygons of which one 

circumscribes it and the other is iso- 
perimetric with it. In addition, the area 

of the circle is less than that of any cir- 
cumscribed polygon and greater than that 
of any isoperimetric polygon. And further, 
of these circumscribed polygons, the one 
that has the greater number of sides has 
a smaller area than the one that has 

hand, the isoperimetric polygon 
that has the greater num- 

ber of sides is the 
larger. 

a lesser number; but, on the other 

- Galileo Galilei (1638) 

1 
turn, in the 

following treatises, to 
various uses of those triangles 

whose generator is unity. But I leave out 
many more than I include; it is extraurdinary how 

fertile in properties this triangle is. Everyone can try his hand. 

- Blaise Pascal (1654) 

Figure 15. Examples of line breaking with lines of different sizes. 

But the interesting thing is that this economy of storage would not be possible if the 
future lines were not all of the same length, since differing line lengths might well 
mean that it would be much better to put ‘seen’ on line 4 after all; for example, we 
have mentioned a trick for forcing the algorithm to produce a given number of lines. 
In the presence of varying line lengths, therefore, the algorithm would need to have 
two separate list entries for an active breakpoint after the word ‘seen’. The computer 
cannot simply remember the one with fewest total demerits, because the optimality 
principle of dynamic programming would not be valid in such a case. 

Figure 15 is an example of line breaking when the individual lengths are all different. 
In such cases, the need to attach line numbers to breakpoints might mean that the 
number of active breakpoints substantially exceeds the maximum number of words per 
line, if the feasibility tolerance is set high; so it is desirable to set the tolerance low. 
On the other hand, if the tolerance is set too low, there may be no way to break the 
paragraph into lines having a desired shape. Fortunately, there is usually a happy 
medium in which the algorithm has enough flexibility to find a good solution without 
needing too much time and space. The data in Figure 16 shows, for example, that the 
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Figure 16. Details of the feasible 
breakpoints in the first example 
of Figure 15, showing how the 
optimum solution was found. 

'The area of d .306 

circle is a mean propor-' .a61 

tional bqtween any two regula? .a 

and similar polygons of which one'1.016 
cirpqcribes it and the other is is&' i . a w  

perhetric with it. In ad&tion, the areal 
of the' circle is less than that of any cir; 
c w c r i b e d  polygon and greater than that! .OTa 

of and is&ell$netric polygon. And fuaher,' .693 

of these' ci$umpibed polygons, the one' l.6ai 

that' had the' greater n u a e r  of sides had sTa6 

a' smallei areal than the one that had1.4a6 
al lesser nurqber;' but, on the othe+l.IK6 

hand,' the' isberhetric polygon' 1.161 

that has the' greater num-' .osO 

be? of sides id the' 4 0  

larger. .OOO 

algorithm did not have to do very much work to find an optimal solution for Galileo's 
remarks on circles, when the adjustment ratio on each feasible line was required to be 
2 or less; yet there was sufficient flexibility to make feasible solutions possible. 

A good line-breaking method is especially important for technical typesetting, since 
it is undesirable to break up mathematical formulas that appear in the text. Some of 
the most difficult copy of this kind appears in Muthematical Reviews or in the answer 
pages of The A r t  of Computer Programming, since the material in those publications 
is often densely packed with formulas. Figure 17 shows a typical example from the 
answer pages of Seminumerical Algorithmsg, together with indications of the feasible 
breaks when the adjustment ratios are constrained to be at most 1 .  Although some 
feasible breakpoints occur in the middle of formulas, they are associated with penalties 
that make them comparatively undesirable, so the algorithm was able to keep all of 
the mathematics of this paragraph intact. 

' 15. (This procedure maintains four integers (A, B, C, D) with the invariant meanind .1as 

that "our remaining job is to output the continued fraction for (Ay + B)/(Cy + D); .as9 

where y is the input yet to come.") Initially set j t k c 0, (A, B,  C ,  D) t (a, b, c, d),J .oas 

then input x j  and set (A, B, C, D) t ( h j  + B,A, Cxj + D, C) ,  j 4- j + 1, ond O+ -160 

mord times until C + D has the same sign as C. (When j 2 1 and the input' had -606 

not' terminated, we know that 1 < y < 00; and when C + D has the samd sign' .DDa 

as d wd know therefore that (Ay + B)/(Cy + D) lies between ( A  + B)/(C +'Dl and 
A/C.Y Nod comes' the general step: JI no integer lies strictly between (A+'B)/(C+'DY - . u 6  

k +I k +' 1;' otherwise' input X j  and set (A, B, C,D) t ( A x j  + B,A, Cxj +' D, C): .T6P 

j +I j +' 1.' The' general' step' is' repeated ad infinitum. However, if at any time thd -461 

find z] id input: thd algorithm' immediately switches gears: It outputs the continued .air 

and A/C: Output! xk t [A/C] ,  and set (A, B, C,  D)  t (C, D,A - xkc, B -'XkD): .a46 

fraction' fox' ( k j  +'B)/(CZj +ID)! using Euclid's algorithm, and terminates. .000 

Figure 17. An example of the feasible breakpoints found by the algorithm in a paragraph 
containing numerous mathematical formulas. 
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In olden times when wishjng still helped one, there lived a .,no 

king whose daughters were all beaqtiful; and the younsst was so -el16 
beaqtiful that the sun ibelf, which has seen so much, was aston- 4 1 5  

ished whenper it shone in her face. Close by the king’s castle lay -.a16 

a great dark fopst, and uqder an old lim%tree in the for-st was 
a well, and when the day was very warm, the king’s child went . l ~ ~  

out into the forEst and sat down by the side of the cool fouqtain; -.538 

and when she was bored she took a golden ball, and threw it up -.134 

on high and caught it; and this ball was her favorite plaything. 
In olden times when wishjng still helped one, there lived a .TnO 

king whose daughters were all beaytgul; and the youngest was .a46 

so beaqtiful that the sun iQelf, which has seen so much, was .661 

astongshed wheqver it shone in her face. Close by the king’s 
castle lay a great dark for-st, and uqder an old lim%tree in the . o m  

forfist was a well, and when the day was very warm, the king’s a 1 1 3  

child went out into the forfist and sat down by the side of the a346  

cool fouqtain; and when she was bored she took a golden ball, -111 

and threw it up on high and caught it; and this ball was her -103 

In olden times when wiswg still helped one, there lived l..OK 

a king whose daughters were all bea&.ful; and the young- l . 4 ~ l  

est was so beaqtaful that the sun iQelf, which has seen so 1.431 

much, was astoqished whewver it shone in her face. 
by the king’s castle lay a great dark forpt, and uqder an 1.461 

old lim%tree in the fopst was a well, and when the day 1.8nI 

was very warm, the king’s child went out into the for-st 1.886 

and sat down by the side of the cool fouqtain; and when 1.551 

she was bored she took a golden ball, and threw it up on 1 . 3 E O  

high and caught it; and this ball was her favorite play- l.lTs 

In olden times when wishjng still helped one, there 3.313 
lived a king whose daugh,,ters were all bea&t@ul; and 3.610 

the youngpst was so beaqtiful that the sun ibelf, which a.mn 

has seen so much, was astonjshed whenper it shone 3.636 

in her face. Close by the king’s castle lay a great 3.163 
dark forEst, and uqder an old lim%tree in the for- 3.050 

est was a well, and when the day was very warm, 3.616 
the king’s child went out into the fopst and sat down 
by the side of the cool fouqtain; and when she was 3.150 

bored she took a golden ball, and threw it up on S.lao 

high and caught it; and this ball was her favoqite play- 1.,76 

favorite play$hing. - 6 6 1  

Close 

thing. .861 

thing. .B6¶ 

Figure 18. Paragraphs obtained when the ‘looseness’ parameter has been set to -1, 0, 
f l  , and + 2 .  As in Figure 14, the spaces have been allowed to stretch up to two ems before 
being considered infeasible. Loose settings like this are sometimes necessary to balance a 
page, but of course the effects are not beautiful when one goes to extremes. 
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MORE BELLS AND WHISTLES 

The optimization problem we have formulated is to find breakpoints that minimize the 
total number of demerits, where the demerits of a particular line depend on its badness 
(i.e., on how much its glue must stretch or shrink) and on a possible penalty associated 
with its final breakpoint; additional demerits are also added when two consecutive lines 
end with hyphens (i.e., end at penalty items with f = 1). Two years of experience 
with such a model of the problem gave excellent results, except that a few paragraphs 
showed up where further improvement was possible. 

The first two lines of Figures 4(a) and 4(b) illustrate a potential source of visual 
disturbance that is not accounted for in the model we have been discussing: These 
paragraphs begin with a tight line (having r = --741) immediately followed by a 
loose line (having r = +-877).  Although the two lines are not offensive in themselves 
the contrast between tight and loose makes them appear worse. Therefore TEX’S new 
algorithm for line breaking recognizes four kinds of lines: 

Class 0 (tight lines), where - 1 < r < - -5; 
Class 1 (normal lines), where - . 5  < r < + . 5 ;  
Class 2 (loose lines), where + .5 < r < + 1; 
Class 3 (very loose lines), where r 2 + -1. 

Additional demerits are added when adjacent lines are not of the same or adjacent 
classes, i.e., when a Class 0 line is preceded or followed by Class 2 or Class 3 ,  or when 
Class 1 is preceded or followed by Class 3. 

This seemingly simple extension actually forces the algorithm to work harder, be- 
cause a feasible breakpoint may now have to be entered into the active list up to four 
times in order to preserve the dynamic-programming principle of optimality. For ex- 
ample, if it is feasible to end at some point with both a Class 0 line and a Class 2 line, 
we must remember both possibilities even though the Class 0 choice has more demerits, 
because it might be desirable to follow this breakpoint with a tight line. On the other 
hand, we need not remember the Class 0 possibility if its total demerits exceed those of 
the Class 2 break plus the demerits for contrasting lines, since the Class 0 breakpoint 
will never be optimum in such a case. 

More experience is needed to determine whether or not the additional computation 
required by this extension is worthwhile. It is comforting for the user to know that the 
line-breaking algorithm takes such refinements into account, but there is no point in 
doing the extra work if the output is hardly ever improved. 

Another extension to the algorithm is needed to raise it to the highest standards of 
quality for hand composition: Sometimes it is desirable to set a paragraph so that it 
comes out one line longer or shorter than its optimum length, because this will avoid 
an isolated ‘widow line’ a t  the top or bottom of a page, or because it will make the 
total number of lines even so that the material can be divided into two equal columns. 
Although the paragraph itself will not be in its optimum form, the entire page will look 
better, and the paragraph will be set as well as possible subject to the given constraints. 
For example, one of the paragraphs in the story of Figure 6 has been set a line shorter 
than its optimum length, so that all six columns come out equal. 

The line-breaking algorithm we shall describe therefore has a ‘looseness’ parameter, 
illustrated in Figure 18. The ‘looseness’ is an integer q such that the total number of 
lines produced for the paragraph is as close as possible to q plus the optimum number, 
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without violating the conditions of feasibility. Figure 1 8  shows what happens to the 
example paragraph of Figure 1 4  when q = - 1 ,  0, + 1, and + 2, respectively. Values 
of q < -1 would be the same as q = - 1 since this paragraph cannot be squeezed any 
further, and values of q > 5 would be the same as q = 5 since the paragraph can’t 
be stretched to more than 15 lines without having at least one line whose adjustment 
ratio exceeds 10. The user can get the optimum solution having fewest possible lines 
by setting q to an extremely negative value like - 100 .  When q # 0, the feasible 
breakpoints corresponding to different line numbers must all be remembered, even 
when every line has the same length. 

When the lines of a paragraph are fairly loose, we don’t want the last line to be 
noticeably different, so it is undesirable to use a ‘finishing glue’ with almost infinite 
stretchability as in our earlier remarks. The penalty for adjacent lines of contrasting 
classes seems to work best in connection with looseness if the finishing glue at the 
paragraph end is set to have a normal space equal to about half the total line width, 
stretching to nearly the full width and shrinking to zero. 

T H E  ALGORITHM ITSELF 

Now let us get down to brass tacks and discuss the details of an optimum line- 
breaking algorithm. We are given a paragraph xi . . . x, described by items x i  = 
( t i ,wi ,y i , z i ,p i ,x )  as explained earlier, where x1 is a box item and x, is a penalty 
item specifying a forced break (p, = --a). We are also given a potentially infinite 
sequence of positive line lengths I,, I,, . . . . There is a parameter c( that gets added 
to the demerits whenever there are two consecutive breakpoints with = 1, and a 
parameter y that gets added to the demerits whenever two consecutive lines belong to 
incompatible fitness classes. There is a threshold parameter p that is an upper bound 
on the adjustment ratios. And there is a looseness parameter q. 

A feasible sequence of breakpoints (b , ,  . . ., bk) is a legal choice of breakpoints such 
that each of the k resulting lines has an adjustment ratio rj d p.  If 4 = 0, the job ofthe 
algorithm is to find a feasible sequence of breakpoints having the fewest total demerits. 
If q # 0, the job of the algorithm is somewhat more difficult to describe precisely; it 
can be formulated as follows: Let k be the number of lines that the algorithm would 
produce when q = 0. Then the algorithm finds a feasible sequence of k + q breakpoints 
having fewest total demerits. However, if this is impossible, the value of q is decreased 
by 1 (if q > 0) or increased by 1 (if q > 0) until a feasible solution is found. Sometimes 
no feasible solution is possible even with q = 0; we will discuss this situation later after 
seeing how the algorithm behaves in the normal case. 

We have seen that it is occasionally useful to permit boxes, glue, and penalties to 
have negative widths and even negative stretchability; but a completely unrestricted 
use of negative values leads to unpleasant complications. For reasons of efficiency, it is 
desirable to place two limitations on the paragraphs that will be treated: 

0 Restriction 1. Let i b f b  be the length of the minimum-length line from the begin- 
ning of the paragraph to breakpoint b,  namely the sum of all wi - zi taken over all 
box and glue items xi for 1 d i<b ,  plus wb if xb is a penalty item. The paragraph 
must have M a d  Mb whenever a and b are legal breakpoints with a < b. 

0 Restriction 2. Let a and b be legal breakpoints with a < 6 ,  and assume that no xi 
in the range a< i < b  is a box item or a forced break (penalty p i  = - a). Then 
either b = m, or xb+l is a box item or a penalty with p b + l <  co. 
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Both of these restrictions are quite reasonable, as they are met by all known practical 
applications. Restriction 2 seems peculiar at first glance, but we will see in a moment 
why it is helpful. 

Our algorithm has the following general outline, viewed from the top down: 

(create an active node representing the beginning of the paragraph); 
for b : = 1 to m do (if b is a legal breakpoint) then 

begin (initialize the feasible breaks at b to the empty set); 
(for each active node a )  do 

begin (compute the adjustment ratio Y from a to b) ;  
if Y < -1 or ( b  is a forced break) then (deactivate node a); 
if - 1 < Y < p then (record a feasible break from a to b ) ;  
end; 

(append the best such breaks as active nodes); 
(if there is a feasible break at b )  then 

end; 
(choose the active node with fewest total demerits); 
if q # 0 then (choose the appropriate active node); 
(use the chosen node to determine the optimum breakpoint sequence) 

The meaning of the ad hoc Algol-like language used here should be self-evident. An 
‘active node’ in this description refers to a record that includes information about a 
breakpoint together with its fitness classification and the line number on which it ends. 

We want to have a data structure that makes this algorithm efficient, and it is not 
hard to design a reasonably good one, but there are two aspects in which some subtlety 
pays off: The operation of computing the adjustment ratio, from a given active node a 
to a given legal breakpoint b, should be made as simple as possible; and there should 
be an easy way to determine which of the feasible breaks at b ought to be saved as 
active nodes. 

In the first place, the adjustment ratio depends on the total width, total stretch- 
ability, and total shrinkability computed from the first box after one breakpoint to 
the following breakpoint, and it would take too much time to compute these sums 
over and over. We can avoid this by computing the sums from the beginning of the 
paragraph to the current place, and subtracting two such sums to obtain the total of 
what lies between them. Let ( & u ) b ,  ( C Y ) b ,  and ( b ) b  denote the respective sums of all 
the wi, yi, and zi in the box and glue items x i  for 1 < i < b. Then if a and b are legal 
breakpoints with a < b ,  the width L a b  of a line from a to b and its stretchability Y a b  

and shrinkability z a b  can be computed as follows: 

L a b  = ( c w ) b  - (Zw)after(a)  + (wb if t b  = ‘penalty’); 
Yab = @Y)b - (zY)after(a); 

zab = (z:x)b - (Cz)after(a)* 

Here ‘after()’ is the smallest index i > a such that either i > m or x i  is a box item 
or xi is a penalty item that forces a break (pi  = -m). These formulas hold even in 
the degenerate case that after(a) > b,  because of Restriction 2; in fact, Restriction 2 
essentially stipulates that the relation ‘after(a) > b’ implies that (h), = (&u)after(a), 
( z Y ) b  = (zY)after(o), and ( x z ) b  = (Ez)after(a)* 
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From these considerations, we may conclude that each node a in the data structure 
should contain the following fields: 
position(a) = index of breakpoint represented by this node (0 = start of paragraph); 
line(a) = number of the line ending at this breakpoint; 
fitness(a) = fitness class of the line ending at this breakpoint; 
totalwidth(a) = (Cw)after(a), used to calculate adjustment ratios; 
totalstretch(a) = (Cy)after(a,, used to calculate adjustment ratios; 
totalshrink(a) = (Cz)af,er(a), used to calculate adjustment ratios; 
totaldemerits(a) = minimum total demerits up to this breakpoint; 
previous(a) = pointer to the best node for the preceding breakpoint; 
link(a) = pointer to the next node in the list. 
Nodes become active when they are first created, and they become passive when they 
are deactivated. The algorithm maintains global variables A and P, which point 
respectively to the first node in the active list and the first node in the passive list. 
The  first step can therefore be fleshed out as follows: 

(create an active node representing the beginning of the paragraph) = 
begin A : = new node (position = 0, line = 0, fitness = 1 ,  

totalwidth = 0, totalstretch = 0, totalshrink = 0, 
totaldemerits = 0, previous = A, link = A); 

P : =  A; 
end. 

We also introduce global variables CW, C Y ,  and ZZ to represent (Zw),, (CY)b, 
and (Cz), in the main loop of the algorithm, so that the operation ‘for b : = 1 to m do 
(if b is a legal breakpoint) then (main loop)’ takes the following form: 

CW:= C Y : =  CZ:=O;  
for b : =  1 tom do 

if tb = ‘box’ then C W :  = C W +  wb 
else if tb = ‘glue’ then 

begin if t b p 1  = ‘box’ then (main loop); 

end 
CW:= ZW+w,; C Y : =  CY+Yb; xz:= xz+zb; 

else if p ,  # +cc then (main loop). 
In the main loop itself, the operation ‘compute the adjustment ratio Y from a to b’ can 
now be implemented simply as follows: 

L : = C W -  totalwidth(a); 
if tb = ‘penalty’ then L : = L + w,; 
j : =  l ine(a)+l;  
if L < lj then 

begin Y :  = C Y - totalstretch(a); 
if Y > O  then Y : =  ($-L)/Y else I : =  co; 
end 

begin 2 : = C Z  - totalshrink(a); 
if 2 > 0 then Y : =  ($-L) /Z  else Y : =  00; 
end 

else if L > l j  then 

else Y : =  0. 
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The other nonobvious problem we have to deal with is caused by the fact that 
several nodes might correspond to a single breakpoint. We will never create two nodes 
having the same values of (position, line, fitness), since the whole point of our dynamic 
programming approach is that we need only remember the best possible way to get 
to each feasible break position having a given line number and a given fitness class. 
But it is not immediately clear how to keep track of the best ways that lead to a 
given position, when that position can occur with different line numbers; we could, 
for example, maintain a hash table with (line, fitness) as the key, but that would 
be unnecessarily complicated. The solution is to keep the active list sorted by line 
numbers: After looking at all the active nodes for l inej ,  we can insert new active 
nodes for line j +  1 into the list just before any active nodes for lines >j+  1 that 
we are about to look at next. 

An additional complication is that we don’t want to create active nodes for different 
line numbers when the line lengths are all identical, unless q # 0, since this would 
unnecessarily slow the algorithm down; the complexities of the general case should 
not encumber the simple situations that arise most often. Therefore we assume that 
an indexj, is known such that all breaks at line numbers >jo can be considered 
equivalent. This index j ,  is determined as follows: If q # 0, then j ,  = 00; otherwise 
j ,  is as small as possible such that Z,. = 4 + ,  for all j > j,. For example, if q = 0 and 
I, = I, = I, # Z4 = I, = - - . ,  we let j ,  = 3 ,  since it is unnecessary to distinguish a 
breakpoint that ends line 3 from a breakpoint that ends line 4 at the same position, as 
far as any subsequent lines are concerned. 

For each position b and line numberj, it is convenient to remember the best feasible 
breakpoints having fitness classifications 0, 1, 2, 3 by maintaining four values Do, D, , 
D,, D,, where D, is the smallest known total of demerits that leads to a breakpoint at 
position b and linej and class c. Another variable D = min(D,, D,, D,, 0,) turns out 
to be convenient as well, and we let A, point to the active node a that leads to the best 
value 0,. Thus the main loop takes the following slightly altered form: 

begin a : =  A; preva := A; 

loop: nexta : = link(a); 
(compute the adjustment ratio Y from a to b ) ;  
if r < -1 or pb = -00 then (deactivate node a) else preva: = a; 
if -1Grdpthen 

begin (compute demerits d and fitness class c); 
if d<D, then 

begin D,:= d; A,:= a; if d < D  then D:= d; 
end; 

loop: D , : = D , : = D , : = D , : = D : =  +0O; 

end; 
a : =  nexta; if a = A then exit loop; 
if line(a)aj and j< j ,  then exit loop; 
repeat; 

if D < 00 then (insert new active nodes for breaks from A, to b);  
if a = A then exit loop; 
repeat; 

if A = A then (do something drastic since there is no feasible solution); 
end. 
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For a given position b, the inner loop of this code considers all nodes a having 
equivalent line numbers, while the outer loop runs through all of the line numbers that 
are not equivalent. 

I t  is not difficult to derive a precise encoding of the operations that have been 
abbreviated in these loops: 

(compute demerits d and fitness class c )  = 
begin if pb 2 0 then d : = (1 + 100 I r l 3  +pJ2 
else if pb # -00 then d :  = (1  + 1001 r 1 3 ) 2  - p i  
else d : = (1 + 100 1 r I3l2; 

if r < -.5 then c : =  0 
else if r < .5  then c : =  1 
else if r < 1 then c : =  2 else c : =  3; 
if )c-fitness(a)) > 1 then d : =  d+y; 
d : = d + totaldemerits(a); 
end; 

begin (compute tw = (Zw)after(b), tY = (xY)after(b), and tz = (Cz)aftcr(bt); 
for c : =  0 to 3 do if D, < D f y  then 

begin s : = new node(position = 6, line = line(A,) + 1, fitness = c, 

: = d+ a . f b  .fposition(a); 

(insert new active nodes for breaks from A, to b ) =  

totalwidth = tw, totalstretch = ty, totalshrink = tz, 
totaldemerits = D,, previous = A,, link = a); 

if preva = A then A = d else link(preva) : = s; 
preva : = s; 
end; 

(compute tw = (xw)after(b), tY == (xY)after(b), and = (xz)after(b)) = 
begin tw:=  C W ,  t y : =  Z=Y, t z : =  CZ, z:= b; 

loop: if i > m then exit loop; 
if 4 = ‘box’ then exit loop; 
if ti = ‘glue’ then 

begin tw:= tw+wi; t y : =  ty+yi; t z : =  tz+zi; 
end 

else if pi = - 00 and i> b then exit loop; 
i: = i+ 1; 
repeat; 

end; 
(deactivate node a> = 

begin if preva = A then A : = nexta else link(preva) : = nexta; 
link(a) : = P; P : = a; 
end; 

After the main loop has done its job, the active list will contain only nodes with 

(choose the active node with fewest total demerits) = 

position = m, since x, is a forced break. Thus, we can write 

begin if a : = b : = A; d :  = totaldemerits(a); 
loop: a : = link(a); 
if a = A then exit loop; 
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if totaldemerits(a) < d then 
begin d : = totaldemerits(a); b : = a; 
end; 

repeat; 
k : = line(b); 
end. 

Now b is the chosen node and k is its line number. The subsequent processing for 
q # 0 is equally elementary: 

(choose the appropriate active"node) = 
begin a : = A; s : = 0; 

loop: 6 : = line(a) - k; 
if q <  6 < s or s < 6 d q then 

begin s : = b; d :  = totaldemerits(a); b : = a; 
end 

begin d : = totaldemerits(a); b : = a; 
end; 

a : = link(a); if a = A then exit loop; 
repeat; 

k : = line(b); 
end. 

else if 6 = s and totaldemerits(a) < d then 

Now the desired sequence of k breakpoints is accessible from node b: 
(use the chosen node to determine the optimum breakpoint sequence) = 

for j :  = k down to 1 do 
begin bj : = position(b); b : = previous(b); 
end. 

(Another way to complete the processing, getting the lines in forward order from 1 to k 
instead of from k to 1, appears in the appendix below.) If there is no garbage collection, 
the algorithm concludes by deallocating all nodes on lists A and P .  

Note that Restriction 1 makes it legitimate to deactivate a node when we discover 
that r < - 1, since r < - 1 is equivalent to Zl < Lab-Zab, therefore subsequent 
breakpoints b'>b will have Labr-Zabr 2 Lab-&, .  Thus it is not difficult to 
verify that the algorithm does indeed find an optimal solution: Given any sequence of 
feasible breakpoints b ,  < - . <b,,  we can prove by induction on j that the algorithm 
constructs a node for a feasible break at j ,  with appropriate line numbers and fitness 
classifications, having no more demerits than the given sequence does. 

There is only one loose end remaining in the algorithm, namely the operation 'do 
something drastic since there is no feasible solution'. As mentioned above, the TEX 
system assumes that the user has chosen the tolerance threshold p in such a way that 
human intervention is desirable when this tolerance cannot be met. Another alternative 
would be to have two thresholds and to try the algorithm first with threshold po, 
which is lower than p ,  so the algorithm will generate comparatively few active nodes; 
if there is no way to succeed at tolerance po,  the algorithm could simply return all 
nodes to free storage and try again with the actual threshold p.  This dual-threshold 
method will not always find the strictly optimum feasible solution, since it is possible 
in unusual circumstances for the optimum solution to include a line whose adjustment 
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ratio exceeds po while there is a non-optimum feasible solution meeting the tolerance 
pa; for practical purposes, however, this difference is negligible. 

TEX uses a different sort of dual-threshold method. Since the task of word division 
is nontrivial, TEX first tries to break a paragraph into lines without any discretionary 
hyphens except those already present in the given text, using a tolerance threshold p l .  
If  the algorithm fails to find a feasible solution, or if there is a feasible solution with 
q # 0 but the desired looseness could not be satisfied (6 # q), all nodes are returned 
to free storage and TEX starts again using another tolerance p2.  During this second 
pass, all words of five letters or more are submitted to TEX’S hyphenation algorithm 
before they are treated by the line-breaking algorithm. Thus, the user sets p1 to the 
limit of tolerance for paragraphs that can be completely broken without hyphenation, 
and p2 is set to the tolerance limit when hyphenation must be tried; possibly p 1  will be 
slightly larger than p z ,  but it might also be smaller, if hyphenation is not frowned on 
too much. (TEX users specify two integers, ‘jjpar’ = p: and ‘jpar’ = pz . )  In practice 
p I  and p2 are usually equal to each other, or else p1 is near 1 and p z  > 2; alternatively, 
one can take pz = 0 to effectively disallow hyphenation. 

When both passes fail, TEX continues by reactivating the node that was most 
recently deactivated and treats it as if it were a feasible break leading to 6. This situation 
is actually detected in the routine ‘deactivate node a’, just after the last active node 
has become passive: 

if A = A and secondpass and D = co and r <  -1 then Y:= -1 

The net result is to produce an ‘overfull box’ that sticks out into the right margin, 
whenever no feasible sequence of line breaks is possible. As discussed above, some kind 
of error indication is necessary, since the user is assumed to have set p to a value such 
that further stretching is intolerable and requires manual intervention. An overfuIl box 
is easier to provide than an underfull one, by the nature of the algorithm. The setting 
of the overfull box will be as tight as possible, so that the user can easily see how to 
devise appropriate corrective action such as a forced line break or hyphenation. 

COMPUTATIONAL EXPERIENCE 

The algorithm described in the previous section is rather complex, since it is intended 
to apply to a wide variety of situations that arise in typesetting. A considerably 
simpler procedure is possible for the special cases needed for word processors and 
newspapers; the appendix to this paper gives details about such a stripped-down 
version. Contrariwise, the algorithm in TEX is even more complex than the one we 
have described, because TEX must deal with leaders, with footnotes or cross references 
or page-break marks attached to lines, and with spacing both inside and immediately 
outside of math formulas; the spacing that surrounds a formula is slightly different from 
glue because it disappears when followed by a line break, but it does not represent a 
legal breakpoint. (A complete description of TEX’s algorithm will appear elsewhere.’ 3, 

Experience has shown that the general algorithm is quite efficient in practice, in spite 
of all the things it must cope with. 

So many parameters are present, it is impossible for anyone actually to experiment 
with a large fraction of the possibilities. A user can vary the interword spacing and the 
penalties for inserted hyphens, explicit hyphens, adjacent flagged lines, and adjacent 
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lines with incompatible fitness classifications; the tolerance threshold p can also be 
twiddled, not to mention the lengths of lines and the looseness parameter q. Thus 
one could perform computational experiments for years and not have a completely 
definitive idea about the behavior of this algorithm. Even with fixed parameters there 
is a significant variation with respect to the kind of material being typeset; for example, 
highly mathematical copy presents special problems. An interesting comparative study 
of line breaking was made by Duncan et al.’, who considered sample texts from 
Gibbon’s Decline and Fall versus excerpts from a story entitled Salar the Salmon; as 
expected, Gibbon’s vocabulary forced substantially more hyphenated lines. 

On the other hand, we have seen that the optimizing algorithm leads to better 
line breaks even in children’s stories where the words are short and simple, as in 
Grimm’s fairy tales. It would be nice to have a quantitative feeling for how much 
extra computation is necessary to get this improvement in quality. Roughly speaking, 
the computation time is proportional to the number of words of the paragraph, times 
the average number of words per line, since the main loop of the computation runs 
through the currently active nodes, and since the average number of words per line is 
a reasonable estimate of the number of active nodes in all but the first few lines of a 
paragraph (see Figures 12 and 14). On the other hand, there are comparatively few 
active nodes on the first lines of a paragraph, so the performance is actually faster than 
this rough estimate would indicate. Furthermore, the special-purpose algorithm in the 
appendix runs in nearly linear time, independent of the line length, since it does not 
need to run through all of the active nodes. 

Detailed statistics were kept when TEX’S first large production, Seminumerical Algo- 
rithms’, was typeset using the procedure above. This 700-page book has a total of 
5526 ‘paragraphs’ in its text and answer pages, if we regard displayed formulas as 
separators between independent paragraphs. The 5526 paragraphs were broken into 
a total of 21,057 lines, of which 550 (about 2.6 per cent) ended with hyphens. The 
lines were usually 29 picas wide, which means 626.4 machine units in 10-point type and 
about 677.19 machine units in 9-point type, roughly twelve or thirteen words per line. 
The threshold values p1 and p2 were normally both set to 7 2 %  1 *26, so the spaces 
between words ranged from a minimum of 4 units to a maximum of 6+ 3 v 2 ~ 9 . 7 8  
units. The penalty for breaking after a hyphen was 50; the consecutive-hyphens and 
adjacent-incompatibility demerits were c( = y = 3000. The second (hyphenation) pass 
was needed on only 279 of the paragraphs, i.e., about 5% of the time; a feasible solution 
without hyphenation was found in the remaining 5247 cases. The second pass would 
only try to hyphenate uncapitalized words of five or more letters, containing no accents, 
ligatures, or hyphens, and it turned out that exactly 6700 words were submitted to the 
hyphenation procedure. Thus the number of attempted hyphenations per paragraph 
was approximately 1 ‘2, only slightly more than needed by conventional nonoptimizing 
algorithms, and this was not a significant factor in the running time. 

The main contribution to the running time came, of course, from the main loop of the 
algorithm, which was executed 274,102 times (about 50 times per paragraph, including 
both passes lumped together when the second pass was needed). The total number of 
break nodes created was 64,003 (about 12 per paragraph), including multiplicities for 
the comparatively rare cases that different fitness classifications or line numbers needed 
to be distinguished for the same breakpoint. Thus, about 23 yo of the legal breakpoints 
turned out to be feasible ones, given these comparatively low values of p1 and p2.  The 
inner loop of the computation was performed 880,677 times; this is the total number 
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Figure 19. The adjustment ratios for interword spaces 
in a 700-page book. 

of active nodes examined when each legal breakpoint was processed, summed over all 
legal breakpoints. Note that this amounts to about 160 active node examinations per 
paragraph, and 3.2 per breakpoint, so the inner loop definitely dominates the running 
time. If we assume that words are about five letters long, so that a legal break occurs 
for every six characters of input text including the spaces between words, the algorithm 
costs about half of an inner-loop step per character of input, plus the time to pass over 
that character in the outermost loop. 

This source data was also used to establish the importance of the optional dominance 
test ‘if D, < D+y’ preceding the creation of a new node; without that test, the 
algorithm was found to need about 25% more executions of the inner loop, because 
so many unnecessary nodes were created. 

And how about the output? Figure 19 shows the actual distribution of adjustment 
ratios r in the 15,531 typeset lines of Seminumerical Algorithms, not counting the 
5526 lines at the ends of paragraphs, for which r ~ 0 .  There was also one line with 
r ~ 1 . 8  and one with ~ ~ 2 . 2  (i.e., a disgraceful spacing of 12.6 units); perhaps some 
reader will be able to spot one or both of these anomalies some day. The average value 
of r over all 21,057 lines was 0.08, and the standard deviation was only 0-403; about 
67% of the lines had word spaces varying between 5 and 7 units. Furthermore the 
author believes that virtually none of the 15,531 line breaks are ‘psychologically bad’ 
in the sense mentioned above. 

Anyone who has experience with typical English text knows that these statistics are 
not only excellent, they are in fact too good to be true; no line-breaking algorithm can 
achieve such stellar behavior without occasional assists from the author, who notices 
that a slight change in wording will permit nicer breaks. Indeed, this is another source 
of improved quality when an author is given composition tools like TEX to work with, 
because a professional compositor does not dare mess around with the given wording 
when setting a paragraph, while an author is happy to make changes that look better, 
especially when such changes are negligible by comparison with changes that are found 
to be necessary for other reasons when a draft is being proofread. An author knows 
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that there are many ways to say what he or she wants to say, so it is no trick at all to 
make an occasional change of wording. 

Theodore L. De Vinne, one of America’s foremost typographers at the turn of the 
century, wrote14 that ‘when the author objects to [a hyphenation] he should be asked 
to add or cancel or substitute a word or words that will prevent the breakage.. . 
Authors who insist on even spacing always, with sightly divisions always, do not 
clearly understand the rigidity of types.’ Another interesting comment was made by 
G. B. Shawl’: ‘In his own works, whenever [William Morris] found a line that justified 
awkwardly, he altered the wording solely for the sake of making it look well in print. 
When a proof has been sent to me with two or three lines so widely spaced as to make 
a grey band across the page, I have often rewritten the passage so as to fill up the lines 
better; but I am sorry to say that my object has generally been so little understood 
that the compositor has spoilt all the rest of the paragraph instead of mending his 
former bad work.’ 

The bias caused by Knuth’s tuning his manuscript to a particular line width makes 
the statistics in Figure 19 inapplicable to the printer’s situation where a given text 
must be typeset as it is. So another experiment was conducted in which the material 
of Section 3 .5  of Seminumerical Algorithms was set with lines 25 picas wide instead 
of 29 picas. Section 3 .5 ,  which deals with the question ‘What is a random sequence?’, 
was chosen because this section most closely resembles typical mathematics papers con- 
taining theorems, proofs, lemmas, etc. In this experiment the optimum-fit algorithm 
had to work harder than it did when the material was set to 29 picas, primarily because 
the second pass was needed about thrice as often (49 times out of 273 paragraphs, 
instead of 16 times); furthermore the second pass was much more tolerant of wide 
spaces (p2 = 10 instead of 72), in, order to guarantee that every paragraph could be 
typeset without manual intervention. There were about 6 examinations of active nodes 
per legal breakpoint encountered, instead of about 3 ,  so the net effect of this change 
in parameters was to nearly double the running time for line breaking. The reason for 
such a discrepancy was primarily the combination of difficult mathematical copy and 
a narrower column measure, rather than the ‘author tuning’, because when the same 
text was set 35  picas wide the second pass was needed only 8 times. 

It is interesting to observe the quality of the spacing obtained in this 25-pica experi- 
ment, since it indicates how well the optimum-fit method can do without any human 
intervention. Figure 20 shows what was obtained, together with the corresponding 
statistics for the best-fit method when it was applied to the same data. About 800 line 
breaks were involved in each case, not counting the final lines of paragraphs. The main 
difference was that optimum-fit tended to put more lines into the range *5 d Y d 1, 
while best-fit produced considerably more lines that were extremely spaced out. The 
standard deviation of spacing was 0.53 (optimum-fit) versus 0.65 (best-fit); 24 of the 
lines typeset by best-fit had spaces exceeding 12 units, while only 7 such bad lines were 
produced by the optimum-fit method. An examination of these seven problematical 
cases showed that three of them were due to long unbreakable formulas embedded in 
the text, three were due to the rule that TEX does not try to hyphenate capitalized 
words, and the other one was due to TEX’S inability to hyphenate the word ‘reasonable’. 
Cursory inspection of the output indicated that the main difference between best-fit 
and optimum-fit, in the eyes of a casual reader, would be that the best-fit method not 
only resorted to occasional wide spacing, it also tended to end substantially more lines 
with hyphens: 119 by comparison with 80. An author who cares about spacing, and 
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-1.00 5 r <-0.75 
-0.75 5 r <-0.50 
-0.50 5 r <-0.25 
-0.25 5 r < 0.00 
0.00 5 r <+0.25 

t0.25 5 r <$-0.50 
+0.50 5 r < i-0.75 
t0.75 5 r <+l.OO 
+l.OO 5 r <+1.25 
+1.25 5 r <+1.50 
+l.50 5 r <+1.75 
f1.75 5 r <+2.00 
t2.00 5 r <+w 
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-1.00 5 r <-0.75 
-0.75 5 t < -0.50 
-0.50 5 t <-0.25 
-0.25 5 t < 0.00 
0.00 5 r <+0.25 

+0.25 5 t <+0.50 
+0.50 5 r <+0.75 
+0.75 5 r <+l.OO 
+l.OO 5 r <+1.25 
+1.25 5 r <+l.50 
+l.50 5 r <+1.75 
+1.75 5 r <+2.00 
+2.00 5 r <+oo 

a, 
'Optimum fit' 

!I 
Figure 20. The distribution of interword spaces found by the best line-at-a-time method, 
compared to thedistribution found by the best paragraph-at-a-timemethod, whendificult 
mathematical copy i s  typeset without human intervention. 

who therefore will edit a manuscript until it can be typeset satisfactorily, would have 
to do a significant amount of extra work in order to get the best-fit method to produce 
decent results with such difficult copy, but the output of the optimum-fit method could 
be made suitable with only a few author's alterations. 

A HISTORICAL SUMMARY 
We have now discussed most of the issues that arise in line breaking, and it is interesting 
to compare the newfangled approaches to what printers have actually been doing 
through the years. Medieval scribes, who prepared beautiful manuscripts by hand 
before the days of printing, were generally careful to break lines so that the right- 
hand margins would be nearly straight, and this practice was continued by the early 
printers. Indeed, printers had to fill up each line of type with spaces anyway, so that 
the individual letters wouldn't fall out of position while making impressions, and it 
wasn't too much more difficult for a compositor to distribute the spaces between words 
instead of putting them at the ends of lines. 

One of the most difficult challenges faced by printers over the years has been the 
typesetting of 'polyglot Bibles'-editions of the Bible in which the original languages 
are set side by side with various translations-since special care is needed to keep 
the versions of various languages synchronized with each other. Furthermore the fact 
that several languages appear on each page means that the texts tend to be set with 
narrower columns than usual; this, together with the fact that one dare not alter the 
sacred words, makes the line-breaking problem especially difficult. We can get a good 
idea of the early printers' approaches to line breaking by examining their polyglot 
Bibles carefully. 

The first polyglot Bible'6,'7,'8 was produced in Spain by the eminent Cardinal 
J imhez de Cisneros, who reportedly spent 50,000 gold ducats to support the project. 
It is generally called the Complutensian Polyglot, because it was prepared in Alcalh 
de Henares, a city near Madrid whose old Roman name was Complutus. The printer, 
Arnao Guillen de Brocar, devoted the years 1514-1517 to the production of this six- 
volume set, and it is said that the Hebrew and Greek fonts he made for the occasion 
are among the finest ever cut. His approach to justification was quite interesting and 
unusual, as shown in Figure 21 : Instead of justifying the lines by increasing the word 
spaces, he inserted visible leaders to obtain solid blocks of copy with straight margins. 
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Figure 21. The opening verses 
of Genesis as typeset in the 
Complutensian Polyglot Bible; 
the Latin words are keyed to the 
Hebrew, and leaders are used to 
f i l l  out lines that would otherwise 
be ragged right and ragged left. 
Greek and Chaldee (Aramaic) 
versions of the text also appeared 
on the same page. 

These leaders appear at the right of the Latin lines and at the left of the Hebrew lines. 
He changed this style somewhat after gaining more experience: Starting at about the 
46th chapter of Genesis, the Hebrew text was justified by word spaces, although the 
leaders continued to appear in the Latin column. It is clear that straight margins were 
considered strongly desirable at the time. 

Brocar’s method of line breaking seems to be essentially a first-fit approach to the 
Hebrew text; the corresponding Latin translation could then be set up rather easily, 
since there were two lines of Latin for each line of Hebrew, and this gave plenty of room 
for the Latin. In some cases when the Greek text was abnormally long by comparison 
with the corresponding Hebrew (e.g., Exodus 38), Brocar set the Hebrew quite loosely, 
so it is evident that he gave considerable attention to line breaking. 

At about the same time, a polyglot version of the book of Psalms was being prepared 
as a labor of love by Agostino Giustiniani of Genoa.” This was the first polyglot book 
actually to appear in print with each language in its own characters, although Origen’s 
third-century Hexupla manuscript is generally considered to be the inspiration for all 
of the later polyglot volumes. Giustiniani’s Psalter had eight columns: (1 )  The Hebrew 
original; (2) A literal Latin rendition of (1); (3) The common Latin (Vulgate) version; 
(4) The Greek (Septuagint) version; (5) The Arabic version; (6) The Chaldee version; 
(7) A literal Latin translation of (6); (8) Notes. Since the Psalms are poems, all of the 
columns except the last were set with ragged margins, and an interesting convention 
was used to deal with the occasional line that was too wide to fit: A left parenthesis was 
placed at the very end of the broken line, and the remainder of that line (preceded by 
another left parenthesis) was placed flush with the margin of the preceding or following 
line, wherever it would fit. 

Only column (8) was justified, and it had a rather narrow measure of about 21 char- 
acters per line. By studying this column we can conclude that Giustiniani did not take 
great pains to make equal spacing by fiddling with the words. For example, Figure 22, 
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Figure 22. Part of Giustiniani’s commentary on the Psalms. The 
presence of a loose line surrounded by two very tight lines indicates 
that the compositor did not go back to reset previous lines when a 
problem arose. 

which comes from the notes on Psalm 6, shows two very tight lines enclosing a very 
loose one in the passage ‘scriptum est . . . quod qui’. If Giustiniani had been extremely 
concerned about spacing he would have used the hyphenation ‘cog-nosces’; the other 
potential solution, to move ‘ad’ up a line, would not have worked since there isn’t quite 
room for ‘ad’ on the loose line. Notice that another aid to line breaking in Latin at 
that time was to replace an m or n by a tilde on the previous vowel (e.g., ‘premifi’ 
for premium and ‘miido’ for mundo); an extension to the box/glue/penalty algebra 
would be needed to include such options in TEX’S line-breaking algorithm! It is not 
clear why Giustiniani didn’t set ‘acceperk’ on the third line, to save space, since he 
had no room for the hyphen of ‘in-tellectum’; perhaps he didn’t have enough 6’s left 
in his type case. 

Figure 23 shows some justified text from the Complutensian polyglot, taken from 
the Latin translation of an early Aramaic translation of the original Hebrew. The 
compositor was somewhat miraculously able to maintain this uniformly tight spacing 
throughout the entire volume, by making use of abbreviations and frequent hyphena- 
tions. Note that, as in Figure 22, the hyphen was omitted from a broken word when 
there was no room for it; e.g., ‘diuisit’ has been divided without a hyphen. 

Figure 23. Early printing of Latin texts featured 
uniformly tight spacing, obtained by frequent use 
of abbreviations and word division. This sample 
comes from the same page as Figure 21.  



BREAKING PARAGRAPHS INTO LINES 1169 

%t ftatiin persexenitit ad 
, & conitirueruiit aducr- 
cos prcclium in &ebb- 

bat-oruin , & dixerutx ad 

I %  Figure 24. The Latin version of 1 Maccabees 2:32 from Plantin’s Royal 
Polygot of Antwerp, showing how the second-last line of a paragraph 
was spaced out in order to add a line. (The copy is distorted at the 
right of this illustration, because the pages of this rare book cannot be 
laid $at without harming its binding.) 

COS. 

The next great polyglot Bible was the Royal Polyglot of Antwerp,20 produced during 
1568-1 572 by the outstanding printer Christophe Plantin. Numerous copies of the 
Complutensian Polyglot had unfortunately been lost at sea, so King Phillip I1 commis- 
sioned a new edition that would also take advantage of recent scholarship. Plantin 
was a pious man who was active in pacifist religious circles and anxious to undertake 
the job; but when he had completed the work he described it as an ‘indescribable toil, 
labor, and expense.’ On June 9, 1572, Plantin sent a letter to one of his friends, saying 
‘I am astonished at what I undertook, a task I would not do again even if I received 
12,000 crowns as a gift.’ But at least his work was widely appreciated: Lucas of Bruges, 
writing in 1577, said that ‘the art of the printer has never produced anything nobler, 
nor anything more splendid.’ 

Most of Plantin’s polyglot Bible was justified with fairly wide columns having about 
42 characters per line, so it did not present especially difficult problems of line breaking. 
But we can get some idea of his methods by studying the texts of the Apocrypha, which 
were set with a narrower measure of about 27 characters per line. He arranged things 
so that each column on a page would have about the same number of lines, even though 
the individual columns were in different languages. Figure 24 shows an example of a 
passage excerpted from a page where the Latin text was comparatively sparse, so the 
paragraphs on that page needed to be rather loose. It appears that the entire page 
was set first, then adjustments were made after the Latin column was found to be 
too short; in this case the word ‘eos’ was brought down to make a new line and the 
previous line was spaced out. Plantin’s compositor did not take the trouble to move 
‘sab-’ down to that line, although such a transposition would have avoided a hyphen 
without making the spacing any worse. The optimum solution would have been to 
avoid this hyphenation and to hyphenate the previous line after ‘ad-’, thus achieving 
fairly uniform spacing throughout. 

printed by Thomas Roycroft and others during the Cromwellian years 1653-1 657. 
This massive 8-volume work included texts in Hebrew, Greek, Latin, Aramaic, Syriac, 
Arabic, Ethiopic, Samaritan, and Persian, all with accompanying Latin translations, 
and it has been acclaimed as ‘the typographical achievement of the seventeenth cen- 
tury.’ As in Plantin’s work shown in Figure 24, a paragraph that has been loosened will 
often eod with an unnecessarily tight hyphenated line followed by a loose line followed 
by a one-word line; so it is clear that Roycroft’s compositors did not have time to do 
complex adjustments of line breaks. 

Hyphenations were clearly not frowned upon at the time, since about 40% of all 
lines in the London Polyglot end with a hyphen, regardless of the column width. It 
is not difficult to find pages on which hyphenated lines outnumber the others; and in 
the Latin translation of the Aramaic version of Genesis 4: 15, even the two-letter word 
‘e-o’ was hyphenated! Such practice was not uncommon: for example, the Hamburg 
Polyglot Bible” of 1596 had more than 50% hyphens at the right margin. Both 
Plantin’s polyglot and the notes of Giustiniani’s Psalter had hyphenation percentages 
of about 40%, and the same was true of many medieval manuscripts. Thus it was 

The most accurate and complete of all polyglot Bibles was the London 
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considered better to have the margins straight and to keep the spacing tight, rather 
than to avoid word splits. 

One of the first things that strikes a modern eye when looking at these old Bibles 
is the treatment of punctuation. Note, for example, that no space appears after the 
commas in Figure 22, and a space appears before as well as after one of the commas 
in Figure 24. One can find all four possibilities of ‘space before/no space before’ 
and ‘space after/no space after’ in each of the Bibles mentioned so far, with respect 
to commas, periods, colons, semicolons, and question marks, and with no apparent 
preference between the four choices except that it was comparatively rare to put a 
space before a period. Giustiniani and Plantin occasionally would insert spaces before 
periods, but Roycroft apparently never did. Commas began to be treated like periods 
in this respect about 1700, but colons and semicolons were generally both preceded and 
followed by spaces until the 19th century. Such extra spaces were helpful in justifying, 
of course, and it was also helpful to have the option of leaving out all of the space next 
to a punctuation mark. Roycroft would in fact eliminate the space between words 
when necessary, if the following word was capitalized (e.g., ‘dixitDeus’); apparently a 
printer’s main goal was to keep the text unambiguously decipherable, while ease of 
readability was only of secondary importance. 

Knowledge about how to carry out the work of a trade like printing was originally 
passed from masters to apprentices and not explained to the general public, so we can 
only guess at what the early printers did by looking at their finished products. A trend 
to put trade secrets into print was developing during the 17th century, however,23 
and a book about how to make books was finally written: Joseph Moxon’s Mechanick 

published in 1683, was by forty years the earliest manual of printing in 
any language. Although Moxon did not discuss rules for hyphenation and punctuation, 
he gave interesting information about line breaking and justification. 

‘If the Compositor is not firmly resolv’d to keep himself strictly to the Rules of 
good Workmanship, he is now tempted to make Botches.. .’, namely bad line breaks, 
according to Moxon. The normal ‘thick space’ between words, when beginning to make 
up a line, was one-fourth of what Moxon called the body size (one em), and he also spoke 
of ‘thin spaces’ that were one-seventh of the body size; thus, a printer who followed 
this practice would deal mostly with spaces of 4.5 units and 2.57 units, although these 
measurements were only approximate because of the primitive tools used at the time. 
Moxon’s procedure for justifying a line whose natural width was too narrow was to 
insert thin spaces between one or more words to ‘fill up the Measure pretty stiff,’ and if 
necessary to go back through the line and do this again. ‘Strictly, good Workmanship 
will not allow more [than the original space plus two thin spaces], unless the Measure 
be so short, that by reason of few Words in a Line, necessity compells him to put more 
Spaces between the the Words . .  .These wide Whites are by Compositers (in way of 
Scandal) call’d Pidgeon-holes. . . . And as Lines may be too much Spaced-out, so may 
they be too close Set.’ 

Notice that Moxon’s justification procedure would normally leave uneven spacing 
between words on the same line, since he inserts the thin spaces one by one. In fact, 
such discrepancies were the norm in early printed books, which look something like 
present-day attempts at justification on a typewriter or computer terminal with fixed- 
width spacing. For example, the relative proportions in the spaces of the third line of 
Plantin’s text in Figure 24 are approximately 8 : 12 : 5 : 9 : 4, and in the fifth line 
of Giustiniani’s Figure 22 they are approximately 3 : 2 : 1. Moxon’s book itself (see 
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Figure 25. An excerpt from page 245 of 
Joseph Moxon’s ‘Mechanick Exercises,’ 
vol. 2 ,  the $first book about how printing 
is done. Moxon is describing the process 
of making corrections to pages that have 
already been typeset; the irregular spacing 
found throughout his book is probably due 
in part to the fact that such corrections 
are necessary. 

rf there tx a long rcordor more left out, he 
caniiot exp& to Get that  in into that Pme, whcre- 
fore he ~nult now Over-ran; that is, he mufl put fo 
much of the fore-part of the Lme into the Line 
aboveit, or fo much of the hinder p r t  of the L ~ H C  
into the next Line under it, as will make room for 
\E lrat is I,$ mi : Tltcrefitre Ire confiders liow Wide 
he has Set, that io by Over-rranzq the fewcr Lrnes 
back.ivarcls or foru ards, or both, (as he finrishis help) 
lie may take out ii, ninny LTpures, or other CVlirtes 
as wiil amount to rile T7wRnefi ofwhat he has Left 
o#t : Thus if he have Set wide, he may perhaps Gel 
a fmall Wwdor a S$f& into the forcgoing Lmegnd 
prliaqs another fmall @“odor Syikhie in the follow- 
mg Lme, which if his T-ea.c?~g wt is not much, may 
Gst it in : But if he Left out much, he mufl O V C ~ ; . ~ U M  
iwmy Lints, either backwards or forwards, or both, 
till Iie CQIIIC t oa  Bred : And if when he coines at 
a sreilfi it lie not Gotten in ; he l>rrve.s out a Line. 
In this aiie if hc cantlot Get zn a f.me, by ~ e t t ; ~ ~  
dta tile Mbrd of rllat t3rt-d (as I juR now iheur’d you 

Figure 25) shows extreme variations, frequently breaking the rules he had stated for 
maximum and minimum spaces between words. 

It would be nice to report that Moxon described a particular line-breaking algorithm, 
like the first-fit or best-fit method, but in fact he never suggested any particular 
procedure, nor did any of his successors until the computer age; this is not surprising, 
since people were just expected to use their common sense instead of to obey some rigid 
rules. Many of the breaks in Figure 25 can, however, be accounted for by assuming 
an underlying first-fit algorithm. For example, the looseness on lines 1 ,  4, and 8 is 
probably due to the long words at the beginning of lines 2, 5,  and 9, since these long 
words would not fit on the previous line unless they were hyphenated. On the other 
hand, the extremely tight spacing on line 13  can best be explained by assuming that 
one or more words had to be inserted to correct an error after the page had been set. 
Thus we cannot satisfactorily infer the compositor’s procedure from the final copy, we 
really need to see the first trial proofs. All we can conclude for certain is that there 
was very little attempt to go back and reconsider the already-set lines unless it was 
absolutely necessary to do so; for example, this paragraph would have been better if 
the first line had ended with ‘can-’ and the second with ‘wherefore’. 

Moxon’s compositor was, however, supposed to look ahead: ‘When in Composing he 
comes near a Break [i.e., the end of a paragraph], he for some Lines before he comes to 
it considers whether that Break will end with some reasonable White;  If he finds it will, 
he is pleas’d, but if he finds he shall have but a single W o r d  in his Break,  he either Sets 
wide to drive a Word or two more into the Break-line, or else he Sets close to get in that 
little Word, because a Line with only a little Word in it, shews almost like a White-line, 
which unless it be properly plac’d, is not pleasing to a curious Eye.’ 

Another extract from a London printing manual25 is shown in Figure 26; this one 
is from 1864 instead of 1683. Although the author says that the justifying spaces 
are to be made as nearly equal as possible, whoever did the composition of his book 
did not follow the instructions it contains! Only one of the fine books considered 
above has spaces that look the same, namely the Complutensian Polyglot. In fact, 
printers only rarely achieved truly uniform spacing until machines like the Monotype 
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Figure 26. Printers do not always practice 
what they preach. 

they m y  be all exmtly tho 8nmo length, it will almost 
nlwajqs happcn that tho line will either b v e  to be 
brought out by putting in dditiond qeoecr betwean 
tho wordu, or rontr&ed hy subGtuting thinnm R ~ S  

than those U B ~  in lotting up the line& If the line by 
that altoration is not quit0 tight, as additional thin 
epnm may be inacrlcd between srwh wwds ns &gin 
with j or end with f, and also after dl thepoints, but 
they must, to look wsll, be put a% n w  equdlyaa 
possible botweenesch word in the line, md after each 
sentence an om ~ p s w  ie used 

and Linotype made the task easier towards the end of the nineteenth century; and these 
new machines, with their emphasis on speed, changed the philosophy of justification 
so much that the quality of line breaking decreased when the spacing became uniform: 
It became too inconvenient for the compositor to go back and reconsider any of the 
earlier line breaks of a paragraph, when he was expected to turn out so many more 
ems of type per hour. 

The line breaks in Figure 26 are fairly well done in spite of the uneven spacing, given 
that the compositor wished to avoid hyphenations and the psychologically bad break 
in the phrase ‘with j’; it would have been slightly better, however, to move the word 
‘but’ down to the third-last line. 

Probably the most beautiful spacing ever achieved in any typeset book appeared in 
The Art of Spacing26 by Samuel A. Bartels (1926). This book was hand set by the 
author, and it contains about 50 characters per line. There are no loose lines, and 
no hyphenated words; the final line of each paragraph always fills at least 65% of the 
column width, yet ends at least one em from the right margin. Bartels must have 
changed his original wording many times in order to make this happen; the author as 
compositor is clearly able to enhance the appearance of a book. 

General-purpose computers were first applied to typesetting by Georges P. Bafour, 
And& R. Blanchard, and Franqois H. Raymond in France, who applied for patents 
on their invention in 1954. (They received French and British patents in 1955, and a 
U.S. patent in 1956.’” 2 8 )  This system gave special attention to hyphenation, and its 
authors were probably the first to formulate the method of breaking one line at a time 
in a systematic fashion. Figure 27 shows a specimen of their output, as demonstrated 
at the Imprimerie Nationale in 1958. In this example the word ‘en’ was not included in 
the second line because their scheme tended to favor somewhat loose lines: Each line 
would contain as few characters as possible subject to the condition that the line was 
feasible but the addition of the next K characters would not be feasible; here K was a 
constant, and their method was based on a K-stage lookahead. 

Michael P. Barnett began to experiment with computer typesetting at M.1 .T. in 1961, 
and the work of his group at the Cooperative Computing Laboratory was destined 
to become quite influential in the U.S.A. For example, the TROFF system29 that 
is now in use at many computer centers is a descendant of Barnett’s PC6 system’, 
via other systems called RUNOFF and NROFF. Another line of descent is represented 
by the PAGE-1, PAGE-2, and PAGE-3 systems, which have been used extensively in 
the typesetting ind~stry.~’,  3 1 ,  32 All of these programs use the first-fit method of line 
breaking that is described above. 

At about the same time that Barnett began his M.I.T. studies of computer typeset- 
ting, another important university research project with similar goals was started by 
John Duncan at the University of Newcastle-Upon-Tyne Computing Laboratory. 
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Figure 27. This is a specimen of the output 
produced in 1958 by the first computer- 
controlled typesetting system in which all of 
the line breaks were chosen automatically. 

Line breaking was one of the first subjects studied intensively by this group, and they 
developed a program that would find a feasible way to typeset a paragraph without 
hyphenations, if any sequence of feasible breaks exists, given minimum and maximum 
values for interword spaces. This program essentially worked by backtracking through 
all possibilities, treating them in reverse lexicographic order (i.e., starting with the first 
breakpoint b ,  as large as possible and using the same method recursively to find feasible 
breaks (b2, b,, . . .) in the rest of the paragraph, then decreasing b, and repeating the 
process if necessary). Thus it would either find the lexicographically largest feasible 
sequence of breakpoints or it would conclude that none are feasible; in the latter case 
hyphenation was attempted. This was the first systematic sequence of experiments to 
deal with the line-breaking problem by considering a paragraph as a whole instead of 
working line by line. 

No distinction was made in these early experiments between one sequence of feasible 
breakpoints and another; the only criterion was whether or not all interword spacing 
could be confined to a certain range without requiring hyphenation. Duncan found 
that when lines were 603 units wide, it was possible to avoid virtually all hyphenations 
if spaces were allowed to vary between 3 and 12 units; with 405-unit lines, however, 
hyphens were necessary about 3% of the time in order to keep within these fairly 
generous limits, and when the line width decreased to 288 units the hyphenation 
percentage rose to 12% or 16% depending on the difficulty of the copy being typeset. 
More stringent intervals, such as the requirement of 4- to 9-unit spaces used in most 
of the examples we have been considering above, were found to need more than 4% 
hyphenations on 603-unit lines and 30% to 40% on 288-unit lines. However, these 
numbers are higher than necessary because the Newcastle program did not search for 
the best places to insert hyphens: Whenever it was unfeasible to set more than k lines, 
the (k+ 1)st line was simply hyphenated and the process was restarted. One hyphen 
generated by this method tends to spawn more in the same paragraph, since the first 
line of a paragraph or of an artificially resumed paragraph is the most likely to require 
hyphenation. Examples of the performance can be seen in the article where the method 
was introduced’ (using spaces of 4 to 15  units for the first six pages and 4 to 12 units 
for the rest), as well as in Duncan’s survey paper.2 These articles also discuss possible 
refinements to the method, one idea being to try to avoid loose lines next to tight lines 
in some unspecified manner, another being to try the method first with strict spacing 
intervals and then to increase the tolerance before resorting to hyphenation. 

Such refinements were carried considerably further by P. I .  Cooper33 at Elliott 
Automation, who developed a sophisticated experimental system for dealing with entire 
paragraphs. Cooper’s system worked not only with minimum and maximum spacing 
parameters, it also divided the permissible interword spaces into different sectors that 
yielded different so-called ‘penalty scores’. Besides the penalties associated with the 
spaces on individual lines, there were additional penalty scores based on the respective 
spacing sectors of two consecutive lines, and the goal was to minimize the total penalty 
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needed to typeset a given paragraph. Thus, his model was rather similar to the TEX 
model that we have been discussing, except that all spaces were equivalent to each 
other and special problems like hyphenation were not treated. 

Cooper said that his program ‘employs a mathematical technique known as “dynamic 
programming’’ ’ to select the optimum setting. However, he gave no details, and from 
the stated computer memory requirements it appears that his algorithm was only an 
approximation to true dynamic programming in that it would retain just one optimum 
sum-of-penalties for each breakpoint, not for each (breakpoint, sector) pair. Thus, his 
algorithm was probably similar to the method given in the appendix below. 

Unfortunately, Cooper’s method was ahead of its time; the consensus in 1966 was 
that such additional computer time and memory space were prohibitively expensive. 
Furthermore his method was evaluated only on the basis of how many hyphens it would 
save, not on the better spacing it provided on non-hyphenated lines. For example, J .  L. 
Dolby’s notes on this paper34 compared Cooper’s procedure unfavorably to Duncan’s 
since the Newcastle method removed the same number of hyphens with what appeared 
to be a less complex program. In fact, Cooper himself undersold his scheme with 
unusual modesty and caution when he spoke about it: He said ‘this investigation does 
not support the view that [my approach] should be given a general and enthusiastic 
recommendation.. . . It has to be admitted that an aesthetic improvement is neither 
predictable nor measurable.’ His method was soon forgotten. 

In retrospect we can see that the defect in Cooper’s otherwise admirable approach 
was the way it dealt with hyphenation: No proper tradeoff between hyphenated lines 
and feasible unhyphenated lines was made, and the method would be restarted after 
every hyphen had to be inserted. Thus, the hyphens tended to cluster as in the 
Newcastle experiments. 

Another approach to line breaking has recently been investigated by A. M. Pringle 
of Cambridge University, who devised a procedure called Juggle.35 This algorithm 
uses the best-fit method without hyphenation until reaching a line that cannot be 
accommodated; then it calls a recursive procedure pushback that attempts to move 
a word from the offending line up into the previous text. If pushback fails to solve 
the problem, another recursive routine pullon tries to move a word forward from the 
previous text; hyphenation is attempted only if pullon fails too. Thus, Juggle attempts 
to simulate the performance of a methodical super-conscientious workman in the good 
olde days of hand composition. The recursive backtracking can, however, consume a lot 
of time by comparison with a dynamic programming approach, and an optimum 
sequence of line breaks is not generally achieved; for example, Figure 2 would be 
obtained instead of Figure 3 .  Furthermore there are unusual cases in which feasible 
solutions exist but Juggle will not find them; for example, it may be feasible to push 
back two words but not one. 

Hanan Samet has suggested another measure of optimality in his recent work on line 
breaking.36 Since all methods for setting a paragraph in a given number of lines involve 
the same total amount of blank space, he points out that the average interword space in 
a paragraph is essentially independent of the breakpoints (if we ignore the fact that the 
final line is different). Therefore he suggests that the variance of the interword spaces 
should be minimized, and he proposes a ‘downhill’ algorithm that shifts words between 
lines until no such local transformation further reduces the variance. 

The first magazine publisher to develop computer aids to typesetting was Time Inc. of 
New York City, whose line-breaking decisions went largely on-line in 1967. According 
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to comments made by H. D. Parks3’ at the time, line breaks were determined one by 
one using a variation of the first-fit algorithm that we might call ‘tight-fit’; this gives 
the most words per line except that hyphenation is done only when necessary, and 
it is equivalent to the first-fit method if the normal interword spacing is the same as 
the minimum. The tight-fit method had previously been used on the IBM 1620 Type 
Composition System demonstrated in 1963 (see Duncan,2 pages 159-160), and it is 
reasonable to suppose that essentially the same method was carried over to the Time 
group when they dedicated two IBM 360/40 computers to the typesetting task.38 

Since the final copy in Time magazine has been edited and re-edited, and since 
manual intervention and last-minute corrections will change line-breaking decisions, it 
is impossible to deduce what algorithm is presently used for Time articles merely by 
examining the printed pages; but it is tempting to speculate about how the optimum- 
fit algorithm might improve the appearance of such publications. Figure 28 on the 
next page shows an interesting example based on page 22 of Time magazine dated 
June 23, 1980; Version A shows the published spacing and Version B shows what the 
new algorithm would produce in the same circumstances. All letters of the text have 
been replaced by n’s of the corresponding width, so that it is possible to concentrate 
solely on the spacing; however, it should be pointed out that this device makes bad 
spacing look more innocuous, since a reader isn’t so annoyingly distracted when no 
semantic meaning is present anyway. 

The most interesting thing about Figure 28 is that the final line of the first paragraph 
was brought flush right in order to balance the inserted photograph properly; this 
photograph actually carried over into the right-hand column. Version A shows how the 
desired effect was achieved by stretching the final three lines, leaving large gaps that 
surely caught the curious eye of many a reader; Version B shows how the optimizing 
algorithm is magically able to look ahead and make things come out perfectly. Perhaps 
even more important is the fact that Version B avoids the need for letterspacing that 
spoiled the appearance of lines 6, 9, 10, 23, and 32 in Version A. 

Letterspacing-the insertion of tiny spaces between the letters of a word so as to 
make large interword spaces less prominent-could readily be incorporated into the 
box/glue/penalty model, but it is almost universally denounced by typographers. For 
example, De Vinne14 said that letterspacing is improper even when the columns are 
so narrow that some lines must contain only a single word; Bruce Rogers39 said ‘it 
is preferable to put all the extra space between the words even though the resultant 
“holes” are distressing to the eye.’ Even one-fourth of a unit of space between letters 
makes the word look noticeably different. According to the style rules of the U.S. 
Congressional Record4’, ‘In general, operators should avoid wide spacing. However, 
no letterspacing is permitted.’ The optimum-fit algorithm therefore makes it possible 
to comply more easily with existing laws. 

The idea of applying dynamic programming to line breaking occurred to D. E. Knuth 
in 1976, when Professor Leland Smith of Stanford’s music department raised a related 
question that arises in connection with the layout of music on a page (see Clancy 
and Knuth4’). During a subsequent discussion with students in a problem-solving 
seminar, someone pointed out that essentially the same idea would apply to the texts of 
paragraphs as well as to music. The box/glue/penalty model was developed by Knuth 
in April 1977 when the initial design of TEX was made, although it wasn’t clear at 
that time whether a general optimizing algorithm could be implemented with enough 
efficiency for practical use. Knuth was blissfully unaware of Cooper’s supposedly 
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Figure 28. This example is based on the spacing in a recent issue of Time magazine, but 
all of the letters have been replaced by n’s of various widths. I f  the text were readable, the 
line breaks in Version B would be less distracting than those in Version A. 

unsuccessful experiments with dynamic programming, otherwise he might have rejected 
the whole idea subconsciously before pursuing it at all. 

During the summer of 1977, M. F. Plass introduced the idea of feasible breakpoints 
into Knuth’s original algorithm in order to limit the number of active possibilities and 
still find the optimum solution, unless the optimum was intolerably bad anyway. This 
algorithm was implemented in the first complete version of TEX (March 1978), and 
it appeared to work well. The unexpected power of the box/glue/penalty primitives 
gradually became clear during the next two years of experience with TEX; and when 
somewhat wild uses of negative parameters were discovered (as in the PASCAL and 
Math Reviews examples discussed above), it was necessary to ferret out subtle bugs in 
the original implementation. 
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Finally it became desirable to add more features to TEX’S line-breaking procedure, 
especially an ability to vary the line widths with more flexibility than simple hanging 
indentation. At this point a more fundamental defect in the 1978 implementation 
became apparent, namely that it maintained at most one active node for each break- 
point regardless of the fact that a single breakpoint might feasibly occur on different 
lines; this meant that the algorithm could miss feasible ways to set a paragraph, in 
the presence of sufficiently long hanging indentation. A new algorithm was therefore 
developed in the spring of 1980 to replace TEX’S previous method; at that time the 
refinements about looseness and adjacent-line mismatches were also introduced, so 
that TEX now uses essentially the optimum-fit algorithm that we have discussed in 
detail above. 

PROBLEMS AND REFINEMENTS 

One unfortunate restriction remains in TEX although it is not inherent in the box/ 
glue/penalty model: When a break occurs in the middle of a ligature (e.g., if ‘efficient’ 
becomes ‘ef-ficient’), the computation of character widths is more complicated than 
usual. We must take into account not only the fact that a hyphen has some width, but 
also the fact that ‘f‘ followed by ‘fi’ is wider than ‘ffi’. The same problem occurs when 
setting German text, where some compound words change their spelling when they are 
hyphenated (e.g., ‘backen’ becomes ‘bak-ken’ and ‘Bettuch’ becomes ‘Bett-tuch’). TEX 
does not permit such optional spelling variants; it will only insert an optional hyphen 
character among other unchangeable characters. Manual intervention is necessary in 
the rare cases when a more complicated break cannot be avoided. 

It is interesting to consider what extension would be needed to make the optimum- 
fit algorithm handle cases like the dropping of m’s and n’s in Figure 22. The badness 
function of a line would then depend not only on its natural width, stretchability, and 
shrinkability; it would also depend on the number of m’s and the number of n’s on 
that line. A similar technique could be used to typeset biblical Hebrew, which is never 
hyphenated: Hebrew fonts intended for sacred texts usually include wide variants of 
several letters, so that individual characters on a line can be replaced by their wider 
counterparts in order to avoid wide spaces between words. For example, there is a 
super-extended aleph in addition to the normal one. An appropriate badness function 
for the lines of such paragraphs would take account of the number of dual-width 
characters present. 

The most serious unanticipated problem that has arisen with respect to TEX’S line- 
breaking procedure is the fact that floating-point arithmetic was used for all the 
calculations of badness, demerits, etc., in the original implementations. This leads 
to different results on different computers, since there is so much diversity in existing 
floating-point hardware, and since there are often two choices of breakpoints having 
almost the same total demerits. It is important to be able to guarantee that all versions 
of TEX will set paragraphs identically, because the ability to proofread, edit, and 
print a document at different sites is becoming significant. Therefore the ‘standard’ 
version of TEX, planned for release in 1982, will use fixed-point arithmetic for all of 
its calculations. 

Books on typography frequently discuss a problem that may be the most serious 
consequence of loose typesetting, the occasional gaps of white space that are called 
‘houndsteeth’ or ‘lizards’ or ‘rivers’. Such ugly patterns, which run up through a 
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sequence of lines and distract the reader’s eye, cannot be eliminated by a simple efficient 
technique like dynamic programming. Fortunately, however, the problem almost never 
arises when the optimum-fit algorithm is used, because the computer is generally able 
to find a way to set the lines with suitably tight spacing. Rivers begin to be prevalent 
only when the tolerance threshold p has been set high for some reason, for example in 
Figure 7 where an unusually narrow column is being justified, or in Figure 18(d) where 
the paragraph is two lines longer than optimum. Another case that sometimes leads to 
rivers arises when the text of a paragraph falls into a strictly mechanical pattern, as 
when a newspaper lists all of the guests at a large dinner party. Extensive experience 
with TEX has shown, however, that manual removal of rivers is almost never necessary 
after the optimum-fit algorithm has been used. 

The box/glue/penalty model applies in the vertical dimension as well as in the 
horizontal, so TEX is able to make fairly intelligent decisions about where to start 
each new page. The tricks we have discussed for such things as ragged-right setting 
correspond to analogous vertical tricks for such things as ‘ragged-bottom’ setting. 
However, the current implementation of TEX keeps each page in memory until it has 
been output, so TEX cannot store an entire document and find strictly optimum page 
breaks using the algorithm we have presented for line breaks. The ‘best-fit’ method is 
therefore used to output one page at a time. 

Experiments are now in progress with a two-pass version of TEX that does find 
globally optimum page breaks. This experimental system will also help with the 
positioning of illustrations as near as possible to where they are cited in the accom- 
panying text, taking proper account of the fact that certain pages face each other. 
Many of these issues can be resolved by extending the dynamic programming technique 
and the box/glue/penalty model of this paper, but some closely related problems can 
be shown to be NP complete.42 

APPENDIX: A STRIPPED-DOWN ALGORITHM 

Many applications of line breaking (e.g., in word processors) do not need all of the 
machinery of the general optimizing algorithm described in the text above, and it 
is possible to simplify the general procedure considerably while at the same time 
decreasing its space and time requirements, provided that we are willing to simplify the 
problem specifications and to tolerate less than optimal performance when hyphenation 
is necessary. The ‘suboptimum-fit’ program below is good enough to discover the line 
breaks of Figure 3 or Figure 4(c), but it will not handle some of the more complicated 
examples. More precisely, the stripped-down program assumes that 

a) Instead of the general box/glue/penalty model, the input is specified by a sequence 
w 1  . . . w, of nonnegative box widths representing the words of the paragraph and 
the attached punctuation, together with a sequence of small integersg, . . .g, that 
specifies the type of space to be used between words. For example, we might 
have g k  = 1 when a normal interword space follows the box of width wk, while 
g, = 2 when there is to be no space since box k ends with an explicit hyphen, 
and gk = 3 when box k is the end of the paragraph. Other type codes might be 
used after punctuation. Each type g corresponds to three nonnegative numbers 
(x,,~,, zg) representing respectively the normal spacing, the stretchability, and the 
shrinkability of the corresponding type of space. For example, if types 1,2, and 3 
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are used with the meanings just suggested, we might have 

(xl,Yl,Zl) = (6,392) between words 
(x2,y2, z2)  = (0, 0,O) 
(x3,y3, z3)  = (0, GO, 0) 

after explicit hyphens or dashes 
to fill the final line 

in terms of &em units, where GO stands for some large number. The width w1 
of the first box should include the blank space needed for paragraph indentation; 
thus, the Grimm fairy tale example of Figure 1 would be represented by 

w l , .  . . , W ,  = 34,42,42,.  . . ,24 ,39 ,30 , .  . . , 6 0 , 7 9  
g, ,..., g,= 1 ,  1 ,  1 ,..., 1 ,  2, 1 , . . . ,  1 ,  3 

corresponding to 

‘LIn’ ,  ‘olden’, ‘times’, . . . , ‘old’, ‘lime-’, ‘tree’, . . . , ‘favorite’, ‘plaything.’ 

respectively, using widths from a typical roman font of type. The general input 
sequences w1 . . . w, and g, . . .g, can be expressed in the box/glue/penalty model 
by the equivalent specification 

followed by ‘penalty(0, - 00,0)’ to finish the paragraph. 
b) All lines must have the same width I, and each wk is less than 1. 
c) No word will be hyphenated unless there is no way to set the paragraph without 

violating minimum or maximum constraints on spacing. The minimum for type g 
spaces is 

z; = xg-zg 

Y; = xg + PYg, 
and the maximum is 

where p is a positive tolerance that can be varied by the user. For example, if 
p = 2 the maximum type g space is xg+ 2yg, the normal amount plus twice the 
stretchability. 

d) Hyphenation is performed only at the point where feasible line breaking becomes 
impossible, even though it may be better to hyphenate an earlier word. Thus, 
the general optimum-fit algorithm of the text will give substantially better results 
when high-quality output is desired and hyphenation is frequently necessary. 

e) No penalty is assessed for a tight line next to a loose line, or for consecutive 
hyphenated lines, and the algorithm does not produce paragraphs that are longer 
or shorter than the optimum length. (In other words, a = y = q = 0 in the 
general algorithm.) 

Under these restrictions, optimum breakpoints can be found with extra efficiency. 
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The suboptimum-fit algorithm manipulates two arrays: 

where sk denotes the minimum sum of demerits leading to a break after box k ,  or 
s k  = 00 if there is no feasible way to break there; and 

where p k  is meaningful only if sk  < co, in which case the best case to end a line at 
box k is to begin it with box pk + 1 .  We also assume that 

this represents an invisible box at the very end of the final line of the paragraph. 
Besides the 4n + 4 storage locations for w1 . . . w,+ ,, g, . . .g,, so.  . . s,+ and 

p ,  . . . p n +  1 ,  and the memory required to hold the parameters I, p ,  and (xg, yi, .zi) for 
each type g, the stripped-down algorithm needs only a few miscellaneous variables: 

a = the beginning of the paragraph (normally 0, changed after hyphenation); 
k = the current breakpoint being considered; 
j = the breakpoint being considered as a predecessor of k; 
i = the leftmost breakpoint that could feasibly precede k; 

rn = the number of active breakpoints (i.e., subscriptsj2i with s j<  co); 
C = the normal width of a line from i to k; 

C,,, = the maximum feasible width of a line from i to k; 
Cmin = the minimum feasible width of a line from i to k; 

Ckax = the maximum feasible width of a line f romj  to k; 
Cki, = the minimum feasible width of a line f romj  to k; 

C’ = the normal width of a line f romj  to k; 

r = adjustment ratio f romj  to k; 
d = total demerits from a to. . .to j to k; 
d‘ = minimum total demerits known from a to.  . . to k; 
j’ = predecessor of k that leads to d’ total demerits, if d’ < 00. 

All of these variables are integers, except r ,  which will be a fraction in the range 
- 1 < r < p .  The reader may verify the validity of the algorithm by verifying that 
these interpretations of the variables remain invariant in key places as the program 
proceeds. 

Here now is the program, viewed from the ‘top down’: 
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if m = 0 or k > n then exit loop; 

k : =  k+l; 
repeat; 

if K > n then 
begin output(a, n+ 1); exit loop; 
end 

I .  x = x + wk+ 1 + XQ; xmax : = ‘cmax + y g k ;  x m i n  = Zmin  f z&.; 

else begin (try to hyphenate box k, then output from a to this break); 
a : =  k-1; 
end; 

repeat. 

The operation ‘advance i by 1’ is carried out only when Zmin > I, and this cannot 
happen when k = i+ 1 since Zmin = wk< I in such a case. Therefore the while 
loop terminates; we have 

(advance i by 1) = 
begin if s i < c o  then m:= m-1;  
i:= i + l ;  

end. 
Z:=  c-wi-zgl; Zmax:= C,a,-wi-y;l; xmin:= zrnin-wi-z1; gt 

The inner loop of the suboptimal-fit program is simpler and faster than the corre- 
sponding loop in the general optimum-fit algorithm because it does not consider active 
breakpoints near k ,  only those that are approximately one line-width away: 

(examine all feasible lines ending at k) = 
beginj:= i; Z’:= Z; ELax:= Z,,,; C’ min . := C min, . . d’:= co; 
while ELax 2 I do 

begin if sj < GO then (consider breaking from a to .  . . to j to k); 
j : = j +  1; 
X‘ : = C’- wj-xxg,; ZLax : = ZLax - wj-y;,; XLin : = x’ mln ’ - w J .- zr 9,’ * 

end. 

Again we can conclude that the while loop must terminate, since it will not be executed 
when k = j +  1. The innermost code is easily fleshed out: 

(consider breaking from a to . .  . to  j to k) = 
begin if Z’ < I then r : = p - (I - Z’)/(XLax - Z’) 
else if C’ > I then r : = (I - Z’)/(Z’ - ELi,,) 
else r : = 0; 
d : = sj+ (1 + 100 I r )3)2;  
if d < d’ then 

begin d’ : = d; j’ : = j ;  
end; 

end. 
When hyphenation is necessary, the algorithm goes into panic mode, first searching 

for the last value of i that was feasible, then attempting to split word k. At this point 
the line from i to k - 1 is too short, and from i to k it is too long, so there is hope 
that hyphenation will succeed. 
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(try to hyphenate box k, then output from a to this break) = 
begin loop: C : = C + wi + xE,; 
Emax:= C,,, + ~ ~ + y i , ; C , , , ~ ~ : =  C,,,in+wi+zi,; i: = i-1; 

if si < 00 then exit loop; 
repeat; 

output(a, i); 
(split box k at the best place); 
(output the line up to the best split and adjust wk for continuing); 
end. 

Let us suppose that there are h, ways to split box k into two pieces, where the widths 
of these pieces in the j th  such split are wij and wij, respectively; here wij includes 
the width of an inserted hyphen. An auxiliary hyphenation algorithm is supposed to be 
able to compute hk and these piece widths on demand; this algorithm is invoked only 
when we reach the routine ‘split box k at the best place’. If no hyphenation is desired 
one can simply let hk = 0, and the program below becomes much simpler. There are 
h,+ 1 alternatives to be considered, including the alternative of not splitting at all, 
and the choice can be made as follows: 

(split box k at the best place) = 
begin (invoke hyphenation algorithm to compute h, and the piece widths); 

for j : = 1 to hk do if Emin + wLj - wk < Z then 
j ’ : = O ; d ’ : = a ;  

begin C’ : = Z + wij - wk; 
if C ’ d  I then d : =  10000p~(Z-C’)/(100(C,,,-C)+1) 
else d :  = 1000O~(Y-Z)/(lOO(Z-C,i,)+ 1); 
if d < d’ then 

begin d’:= & j ’ : = j ;  
end; 

end; 
end. 

The final operation, ‘output the line up to the best split and adjust wk for continuing’, 
will only be sketched here since it is much easier to state it informally than to introduce 
still more notation. If j’ # 0, so that hyphenation is to be performed, the program 
outputs a line from box i+l  to box k inclusive, but with box k replaced by the 
hyphenated piece of width wijr ;  then wk is replaced by the width of the other fragment, 
namely wij,. In the other case whenj’ = 0, the program simply outputs a line from 
box i+ 1 to box k- 1 inclusive. 

One more loose end needs to be tightened up: The procedure ‘output(a, i)’ simply 
goes through the p table determining the best line breaks from a to i and typesets 
the corresponding lines. One way to do this without requiring extra memory space 
is to reverse the relevant p-table entries so that they point to successors instead of 
predecessors: 

procedure output(integer a,  i) = 
begin integer q, Y, s; q : = i; s : = 0; 
while q # a do 

beginr:=p,;p,:=s; s : = q ;  q : = r ;  
end; 
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while q # i do 
begin (output the line from box q+ 1 to box s, inclusive); 
q : = s ;  s : = p q ;  
end; 

end. 

In practice there is only a bounded amount of memory available for implementing this 
algorithm, but arbitrarily long paragraphs can be handled if we make a minor change 
suggested by Cooper33: When the number of words in a given paragraph exceeds some 
maximum number nmax, apply the method to the first nmax words; then output all 
but the final line and resume the method again, beginning with the copy carried over 
from the line that was not output. 
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