
SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 11, 1119-1184 (1981)

Breaking Paragraphs into LinesX

DONALD E. KNUTH AND MICHAEL F. PLASS

Computer Science Department, Stanford University, Stanford, California 94305, U.S.A.

SUMMARY

This paper discusses a new approach to the problem of dividing the text of a paragraph into
lines of approximately equal length. Instead of simply making decisions one line at a time,
the method considers the paragraph as a whole, so that the final appearance of a given line
might be influenced by the text on succeeding lines. A system based on three simple primitive
concepts called ‘boxes’, ‘glue’, and ‘penalties’ provides the ability to deal satisfactorily with
a wide variety of typesetting problems in a unified framework, using a single algorithm that
determines optimum breakpoints. The algorithm avoids backtracking by a judicious use
of the techniques of dynamic programming. Extensive computational experience confirms
that the approach is both efficient and effective in producing high-quality output. The paper
concludes with a brief history of line-breaking methods, and an appendix presents a simplified
algorithm that requires comparatively few resources.

KEY WORDS Typesetting Composition Linebreaking Justification Dynamic programming
Word processing Layout Spacing Box/glue/penalty algebra Shortest paths
TEX (Tau Epsilon Chi) History of printing

INTRODUCTION

One of the most important operations necessary when text materials are prepared for
printing or display is the task of dividing long paragraphs into individual lines. When
this job has been done well, people will not be aware of the fact that the words they
are reading have been arbitrarily broken apart and placed into a somewhat rigid and
unnatural rectangular framework; but if the job has been done poorly, readers will
be distracted by bad breaks that interrupt their train of thought. In some cases it
can be difficult to find suitable breakpoints; for example, the narrow columns often
used in newspapers allow for comparatively little flexibility, and the appearance of
mathematical formulas in technical text introduces special complications regardless
of the column width. But even in comparatively simple cases like the typesetting of
an ordinary novel, good line breaking will contribute greatly to the appearance and
desirability of the finished product. In fact, some authors actually write better material
when they are assured that it will look sufficiently beautiful when it appears in print.

The line-breaking problem is informally called the problem of ‘justification’, since it
is the ‘J’ of ‘H & J’ (hyphenation and justification) in today’s commercial composition
and word-processing systems. However, this tends to be a misnomer, because printers

*This research was supported in part by the National Science Foundation under grants IST-7921977
and MCS-7723738; by Office of Naval Research grant N00014-7&C-0330; by the IBM Corporation; and
by the Addison-Wesley Publishing Company. ‘mX’ and ‘Tau Epsilon Chi’ are registered trademarks of the
American Mathematical Society.

0038-0644/8l/lllll9-66 $06.60
@ 1981 by John Wiley & Sons, Ltd.

Received 25 December 1980
Revised 6 February 1981

1120 DONALD E. KNUTH AND MICHAEL F. PLASS

have traditionally used justification to mean the process of taking an individual line of
type and adjusting its spacing to produce a desired length. Even when text is being
typeset with ragged right margins (therefore ‘unjustified’), it needs to be broken into
lines of approximately the same size. The job of adjusting spaces so that left and
right margins are uniformly straight is comparatively laborious when one must work
with metal type, so the task of typesetting a paragraph with last century’s technology
was conceptually a task of justification; nowadays, however, it is no trick at all for
computers to adjust the spacing as desired, so the line-breaking task dominates the
work. This shift in relative difficulty probably accounts for the shift in the meaning of
‘justification’; we shall use the term ‘line breaking’ in this paper to emphasize the fact
that the central problem of concern here is to find breakpoints.

The traditional way to break lines is analogous to what we ordinarily do when using
a typewriter: A bell rings (at least conceptually) when we approach the right margin,
and at that time we decide how best to finish off that line, without looking ahead to see
where the next line or lines might end. Once the typewriter carriage has been returned
to the left margin, we begin afresh without needing to remember anything about the
previous text except where the new line starts. Thus, we don’t have to keep track of
many things at once; such a system is ideally suited to human operation, and it also
leads to simple computer programs.

Book printing is different from typing primarily in that the spaces are of variable
width. Traditional practice has been to assign a minimum and maximum width to
interword spaces, together with a normal width representing the ideal situation. The
standard algorithm for line breaking (see, for example, Barnett’, page 55) then proceeds
as follows: Keep appending words to the current line, assuming the normal spacing,
until reaching a word that does not fit. Break after this word, if it is possible to do
so without compressing the spaces to less than the given minimum; otherwise break
before this word, if it is possible to do so without expanding the spaces to more than
the given maximum. Otherwise hyphenate the offending word, putting as much of it
on the current line as will fit; if no suitable hyphenation points can be found, this may
result in a line whose spaces exceed the given maximum.

There is no need to confine computers to such a simple procedure, since the data for
an entire paragraph is generally available in the computer’s memory. Experience has
shown that significant improvements are possible if the computer takes advantage of
its opportunity to ‘look ahead’ at what is coming later in the paragraph, before making
a final decision about where any of the lines will be broken. This not only tends to
avoid cases where the traditional algorithm has to resort to wide spaces, it also reduces
the number of hyphenations necessary. In other words, line breaking decisions provide
another example of the desirability of ‘late binding’ in computer software.

One of the principal reasons for using computers in typesetting is to save money, but
at the same time we don’t want the output to look cheaper. A properly programmed
computer should, in fact, be able to solve the line-breaking problem better than a
skilled typesetter could do by hand in a reasonable amount of time (unless we give this
person the liberty to change the wording in order to obtain a better fit). For example,
Duncan2 studied the interword spacing of 958 lines that were manually typeset by a
“most respectable publishers’ printer” that he chose not to identify by name, and he
found that nearly 5 % of the lines were quite loosely set; the spaces on those lines
exceeded 10 units (i.e., of an em), and two of the lines even had spaces ezceeding
13 units. We shall see later that a good line-breaking algorithm can do better than this.

BREAKING PARAGRAPHS INTO LINES 1121

Besides the avoidance of hyphens and wide spaces, we can improve on the traditional
line-breaking method by keeping the spaces nearly equal to the normal size, so that
they rarely approach the minimum or maximum limits. We can also try to avoid rapid
changes in the spacing of adjacent lines; we can make special efforts not to hyphenate
two lines in a row, and not to hyphenate the second-last line of a paragraph; we can
try to control the white space on the final line of the paragraph; and so on. Given any
mathematical way to rate the quality of a particular choice of breakpoints, we can ask
the computer to find breakpoints that optimize this function.

But how is the computer to solve such a problem efficiently? When a given paragraph
has n optional breakpoints, there are 2" ways to break it into lines, and even the fastest
conceivable computers could not run through all such possibilities in a reasonable
amount of time. In fact, the job of breaking a paragraph as nicely as possible into
equal-size lines sounds suspiciously like the infamous bin-packing problem, which is
well known to be NP ~ o m p l e t e . ~ Fortunately, however, each line is to consist of
contiguous information from the paragraph, so the line-breaking problem is amenable
to the techniques of discrete dynamic p r ~ g r a m m i n g ~ . ~ ; this means there is a reasonably
efficient way to attack it. We shall see that the optimum breakpoints can be found
in practice with only about twice as much computation as needed by the traditional
algorithm; the new method is sometimes even faster than the old, when we consider
the time saved by not needing to hyphenate so often. Furthermore the new algorithm
is capable of doing other things like setting a paragraph one line longer or one line
shorter, in order to improve the layout of a page.

FORMULATING T H E PROBLEM

Let us now state the line-breaking problem explicitly in mathematical terms. We
shall use the basic concepts and terminology of the TEX typesetting system6, but in
simplified form, since the complexities of general typesetting would obscure the main
principles of line breaking.

For the purposes of this paper, a paragraph is a sequence x1x2 . . . x,,, of m items,
where each individual item xi is either a box specification, a glue specification, or a
penalty specification.

0 A box refers to something that is to be typeset: either a character from some font
of type, or a black rectangle such as a horizontal or vertical rule, or something
built up from several characters such as an accented letter or a mathematical
formula. The contents of a box may be extremely complicated, or they may be
extremely simple; the line-breaking algorithm does not peek inside a box to see
what it contains, so we may consider the boxes to be sealed and locked. As far as
we are concerned, the only relevant thing about a box is its width: When item xi of
a paragraph specifies a box, the width of that box is a real number wi representing
the amount of space that the box will occupy on a line. The width of a box may be
zero, and in fact it may also be negative, although negative widths must be used
with care and understanding according to the precise rules laid down below.

0 Glue refers to blank space that can vary its width in specified ways; it is an elastic
mortar used between boxes in a typeset line. When item xi of a paragraph specifies
glue, there are three real numbers (wi, yi , zj) of importance to the line-breaking

1122 DONALD E. KNUTH AND MICHAEL F. PLASS

algorithm:

wi is the ‘ideal’ or ‘normal’ width;
yi is the ‘stretchability’;
zi is the ‘shrinkability’.

For example, the space between words in a line is often specified by the values
wi = fem, yi = i e m , zi = $em, where one em is the set size of the type being
used (approximately the width of an uppercase ‘M’ in classical type styles). The
actual amount of space occupied by this glue can be adjusted when justifying
a line to some desired width; if the normal width is too small, the adjustment
is proportional to yi, and if the normal width is too large the adjustment is
proportional to zi. The numbers wi, yi, and zi may be negative, subject to certain
natural restrictions explained later; for example, a negative value of wi indicates
a backspace. When yi = zi = 0, the glue has a fixed width wi. Incidentally, the
word ‘glue’ is perhaps not the best term, because it sounds a bit messy; a word
like ‘spring’ would be better, since metal springs expand or compress to fill up
space in essentially the way we want. However, we shall continue to say ‘glue’, a
term used since the early days of TEX (1977), because many people claim to like
it. A glob of glue is often called a skip by TEX users, and it seems preferable to
speak of boxes and skips rather than boxes and springs or boxes and glues. A
skip, by any other name, is of course the same abstract concept, embodied by the
three values (wi,yi, xi).

Penalty specifications refer to potential places to end one line of a paragraph
and begin another, with a certain ‘aesthetic cost’ indicating how desirable or
undesirable such a breakpoint would be. When item xi of a paragraph specifies
a penalty, there is a number pi that helps us decide whether or not to end a
line at this point, as explained below. Intuitively, a high penalty p i indicates
a relatively poor place to break, while a negative value of p i stands for a good
breaking-off place. The penalty p i may also be + 00 or - 00, where ‘00’ denotes
a large number that is infinite for practical purposes, although it really is finite;
in TEX, any penalty 2 1000 is treated as +a, and any penalty 6 - 1000 is
treated as - co. When p i = + co, the break is strictly prohibited; when p i =
- GO, the break is mandatory. Penalty specifications also have widths wi, with the
following meaning: If a line break occurs at this place in the paragraph, additional
typeset material of width wi will be added to the line just before the break occurs.
For example, a potential place at which a word might be hyphenated would be
indicated by letting p i be the penalty for hyphenating there and letting wi be
the width of the hyphen. Penalty specifications are of two kinds, flagged and
unflagged, denoted by f i = 1 and f i = 0. The line-breaking algorithm we shall
discuss tries to avoid having two consecutive breaks at flagged penalties (e.g., two
hyphenations in a row).

Thus, box items are specified by one number wi, while glue items have three numbers
(wi,yi , xi) and penalty items have three numbers (wi,pi,fi). For simplicity, we shall
assume that a paragraph x1 . . . x, is actually specified by six sequences, namely

t , . . . t,, where t i is the type of item x i , either ‘box’, ‘glue’, or ‘penalty’;
w 1 . . . w,, where wi is the width corresponding to xi;

BREAKING PARAGRAPHS INTO LINES 1123

y1 . . . y,, where yi is the stretchability corresponding to x i if t i = ‘glue’,

z, . . . z,, where 3 is the shrinkability corresponding to x i if ti = ‘glue’,

p , . . .p , , where p i is the penalty at xi if ti = ‘penalty’,

fi . . .f,, where3 = 1 if xi is a flagged penalty, otherwise3 = 0.

otherwise yi = 0;

otherwise zi = 0;

otherwise p i = 0;

Any fixed unit of measure can be used in connection with wi, yi, and zi; TEX uses
printers’ points, which are slightly less than inch. In this paper we shall specify
all widths in terms of machine units equal to h e m , assuming a particular size of
type, since the widths turn out to be integer multiples of this unit in many cases;
the numbers in our examples will be as simple as possible when expressed in terms
of machine units.

Perhaps the reader feels this is altogether too much mathematical machinery to
deal with something that is quite straightforward. However, each of the concepts
defined here must be dealt with somehow when breaking paragraphs into lines, and it is
important to give precise rules even for the comparatively simple job of setting straight
text. We shall see later that these primitive notions of boxes, glue, and penalties
will actually support a surprising variety of other line-breaking applications, so that a
careful attention to details bill solve many other problems as a free bonus.

For the time being, it will be best to think of the simple application to straight
text material such as the typesetting of a paragraph in a newspaper or in a short story,
since this will help us internalize the abstract concepts represented by wi, yi, etc. A
typesetting system like TEX will put such an actual paragraph into the abstract form
we want in the following way:

(1) If the paragraph is to be indented, the first item x, will be an empty box whose
width is the amount of indentation.

(2) Each word of the paragraph becomes a sequence of boxes for the characters of the
word, including punctuation marks that belong with that word. The widths wi
are determined by the fonts of type being used. Flagged penalty items are inserted
into these words wherever an acceptable hyphenation could be used to divide a
word at the end of a line. (Such hyphenation points do not need to be included
unless necessary, as we shall see later, but for the moment let us assume that all
of the permissible hyphenations have been specified.)

(3) There is glue between words, corresponding to the recommended spacing conven-
tions of the fonts of type in use. The glue might be different in different contexts;
for example, TEX will make the glue specifications following punctuation marks
slightly different from the normal interword glue.

(4) Explicit hyphens and dashes in the text will be followed by flagged penalty items
having width zero. This specifies a permissible line break after a hyphen or a
dash. Some style conventions also allow breaks before em-dashes, in which case
an unflagged width-zero penalty would precede the dash.

(5) At the very end of a paragraph, two items are appended so that the final line
will be treated properly. First comes a glue item x,-, that specifies the white
space allowable at the right of the last line; then comes a penalty item x, with

1124 DONALD E. KNUTH AND MICHAEL F. PLASS

p , = - co to force a break at the paragraph end. TEX ordinarily uses a ‘finishing
glue’ with w,- = 0, ym-l = 00 (actually 100000 points, which is finite but
large enough to behave like a), and z,,,-~ = 0; thus the normal space at the end
of a paragraph is zero but it can stretch a great deal. The net effect is that’the
other spaces on the final line will shrink, if that line exceeds the desired measure;
otherwise the other spaces will remain essentially at their normal value (because
the finishing glue will do all the stretching necessary to fill up the end of the line).
More subtle choices of the finishing glue x,-

For example, let’s consider the paragraph of Figure 1 , which is taken from Grimm’s
Fairy Tales.7 The five rules above convert the text into the following sequence of

will be discussed later.

601 items:

x1 = empty box for indentation
x2 = box for ‘I’

w1 = 18
w2 = 6

x3 = box for ‘n’
x4 = glue for interword space
x5 = box for ‘0’

w 3 = 10
w4 = 6,
w 5 = 9

Y4 = 3 ,

......
x 3 0 9 = box for ‘1’
~ 3 1 0 = box for ‘i’
xjl = box for ‘m’ ~ 3 1 1 = 15
~ 3 1 2 = box for ‘e’ w312 =
x31 = box for ‘-’ w 3 1 3 =
x 3 1 4 = penalty for explicit hyphen
x 3 1 5 = box for ‘t’

w309 =
w310 =

w314 = 0,
w315 =

P 3 1 4 =

.
x 5 9 2 = box for ‘y’
x593 = penalty for optional hyphen
x594 = box for ‘t’
x595 = box for ‘h’
x 5 9 6 = box for ‘i’
x597 = box for ‘n’
x598 = box for ‘g’
x599 = box for ‘.’
x 6 0 0 = finishing glue
x 6 0 1 = forced break

z4 = 2

w 5 9 2 = 10
w 5 9 3 = 6 ,
w 5 9 4 = 7
w 5 9 5 = 10

w597 = 10
W598 = 9
w 5 9 9 = 5

P 5 9 3 = 50’

w596 =

w600 = Y600 = O0, 2600 =
w601 = O, P 6 0 1 = f 6 0 1 =

f 3 1 4 = 1

f 5 9 3 = 1

In this particular example, a penalty of 50 has been assessed for every line that ends
with a hyphen. In olden times when wis4,ing still helped one, there . la1

lived a king whose daughters were all beaqtiful; and . a i a

the youngst was so beaqt&ful that the sun i@If’, which -.nnl

has seen so much, was astoqished whenper it shone in
her face. Close by the king’s castle lay a great dark .lT1

fowst, and uqier an old limqtree in the forgst was a -146

well, and when the day was very warm, the king’s child -.enK

went out into the forpt and sat down by the side of the -.89a

cool fouqtain; and when she was bored she took a .9er

golden ball, and threw it up on high and caught it; and -.vn8

Figure 1 . A n example
paragraph that has been
typeset by the ‘first-fit’
method. Small triangles

the adjustment ratio for
spaces appears at the
right of each line.

show permissible places to
divide words with hyphens;

this ball was her favorite pla@hing. .001

BREAKING PARAGRAPHS INTO LINES 1125

Optional hyphenation points have been indicated with triangles in Figure 1 . It is
considered bad form to insert a hyphen unless at least two letters precede it and three
follow it; furthermore the syllable following a hyphen shouldn’t have a silent ‘e’, so
we do not admit a hyphenation like ‘sylla-ble’. Smooth reading also means that the
word fragment preceding a hyphen should be long enough that it can be pronounced
correctly, before the reader sees the completion of the word on the next line; thus, a
hyphenation like ‘pro-cess’ would be disturbing. This pronunciation rule accounts for
the fact that the second-last word of Figure 1 does not admit the potential hyphenation
‘fa-vorite’, since the fragment ‘fa-’ might well be the beginning of ‘fa-ther’ which is
pronounced quite differently.

The choice of proper hyphenation points is an important but difficult subject that
is beyond the scope of this paper. We shall not mention it further except to assume
that (a) such potential breakpoints are available to our line-breaking algorithm when
needed; (b) we prefer not to hyphenate when there is a way to avoid it without seriously
messing up the spacing.

The rules for breaking a paragraph into lines should be intuitively clear from this
example, but it is important to state them explicitly. We shall assume that every
paragraph ends with a forced break item x, (penalty -m). A legal breakpoint in a
paragraph is a number b such that either (i) x b is a penalty item with p b < co, or (ii) xb
is a glue item and x b - l is a box item. In other words, one can break at a penalty,
provided that the penalty isn’t co, or at glue, provided that the glue immediately
follows a box. These two cases are the only acceptable breakpoints. Note, for example,
that several glue items may appear consecutively, but it is possible to break only at
the first of them, and only if this one does not immediately follow a penalty item. A
penalty of co can be inserted before glue to make it unbreakable.

The job of line breaking consists of choosing legal breakpoints 6, < + . . < b,, which
specify the ends of k lines into which the paragraph will be broken. Each penalty
item xi whose penalty p i is - GO must be included among these breakpoints; thus, the
final breakpoint b, must be equal to m. For convenience we let b, = 0, and we define
indices aI < - - . <ak to mark the beginning of the lines, as follows: The value of aj
is the smallest integer i between b j - l and bj such that xi is a box item or a penalty
item with p i = -a; if none of the xi in the range b j - l < i < bj meet this criterion,
we let aj = bj . Then the j th line consists of all items x i for aj < i < bj , plus item
xb, if it is a penalty item. In other words we get the lines of the broken paragraph by
cutting it into pieces at the chosen breakpoints, then removing glue and penalty items
at the beginning of each resulting line.

DESIRABILITY CRITERIA

According to this definition of line breaking, there are 2” ways to break a paragraph
into lines, if the paragraph has n legal breakpoints that aren’t forced. For example,
there are 129 legal breakpoints in the paragraph of Figure 1 , not counting x6,,, so
it can be broken into lines in 2129 ways, a number that exceeds lo3’. But of course
most of these choices are absurd, and we need to specify some criteria to separate
acceptable choices from the ridiculous ones. For this purpose we need to know (a) the
desired lengths of lines, and (b) the lengths of lines corresponding to each choice of
breakpoints, including the amount of stretchability and shrinkability that is present.
Then we can compare the desired lengths to the lengths actually obtained.

1126 DONALD E. KNUTH AND MICHAEL F. PLASS

We shall assume that a list of desired lengths Z,, I,, .Z3, . . . is given; normally these
are all the same, but in general we might want lines of different lengths, as when fitting
text around an illustration. The actual length Lj of thejth line, after breakpoints have
been chosen as above, is computed in the following obvious way: We add together
the widths wi of all the box and glue items in the range uj < i < b,, and we add w,,,
to this total if xb, is a penalty item. Thej th line also has a total stretchability Yj and
total shrinkability Zj, obtained by summing all of the yi and zi for glue items in the
range uj < i < bj. Now we can compare the actual length Lj to the desired length Z,
by seeing if there is enough stretchability or shrinkability to change Lj into 4; we
define the adjustment ratio rj of the j th line as follows:

If Lj = lj (a perfect fit), let rj = 0.
If L, < Z j (a short line), let r, = (Zj-Lj)/ Yj , assuming that Y j > 0; the value

If L, > Z, (a long line), let r j = (Zj-Lj)/Zj, assuming that Z j > 0; the value of r j

Thus, for example, rj = 4 if the total stretchability of l inej is three times what would
be needed to expand the glue so that the line length would change from L, to 5.

According to this definition of adjustment ratios, thej th line can be justified by
letting the width of all glue items xi on that line be

wi+r jy i , if rj> 0;
w i + r j z i , if rj< 0;

For if we add up the total width of that line after such adjustments are made, we get
either Lj+rj Yj = 5 or Lj+r jZj = 5, depending on the sign of rj. This distributes
the necessary stretching or shrinking by amounts proportional to the individual glue
components yi or zi, as desired.

For example, the small numbers at the right of the individual lines in Figure 1 show
the values of rj in those lines. A negative ratio like - .881 in the third line means that
the spaces in that line are narrower than their ideal size; a fairly large positive ratio
like .965 in the third-last line indicates a very ‘loose’ fit.

Although there are 2lZ9 ways to break the paragraph of Figure 1 into lines, it turns
out that only 49 of these will result in breaks whose adjustment ratios rj do not
exceed 1 in absolute value; this means that the spaces between words after justification
will lie between wi-zi and wi+yi. Furthermore, only 30 of these 49 ways to make
‘nice’ breaks will do so without introducing hyphens. One of these ways is obtained by
moving ‘the’ from the eighth line down to the ninth.

Our main goal is to find a way to avoid choosing any breakpoints that lead to lines
in which the words are spaced very far apart,
or in which they are very close together, because such lines are distractingand harder to read.
We might therefore say that the line-breaking problem is to find breaks such that
lrjl < 1 in each line, with the minimum number of hyphenations subject to this
condition. Such an approach was taken by Duncan et a1.’ in the early 1960s, and
they obtained fairly good results. However, this criterion depends only on the values
wi-zi and wi+yi, not wi itself, so it does not use all the degrees of freedom present
in our data. Furthermore, such stringent conditions may not be possible to achie‘ve; for
example, if each line of our example were to be 418 units wide, instead of the present

of rj is undefined if Yj< 0 in this case.

is undefined if Z j < 0 in this case.

1127 BREAKING PARAGRAPHS INTO LINES

In olden times when wisung still helped one, there
lived a king whose daughters were all beau,.t#ul; and . d i a

the younest was so beaqtgul that the Bun iQelf, which -.ant

has seen so much, was astoqjshed whewver it shone .ddd

in her face. Close by the king’s castle lay a great dark -.m65
fopst, and uqder an old lim%tree in the forpt was a
well, and when the day was very warm, the king’s child -+a06

went out into the for&& and sat down by theside of .zsI

the cool fouqtain; and when she was bored she took a -.lal

golden ball, and threw it up on high and caught it; .60z

Figure 2. The paragraph
of Figure 1 when the ‘best-jit’
method has been used to find
successive breakpoints. and this ball was her favoqjte plaGhing. .a01

width of 421 units, there would be no way to set the text of Figure 1 without having at
least one very tight line (rj < -1) or at least one very loose line (rj > 1).

We can do a better job of line breaking if we deal with a continuously varying
criterion of quality, not simply the yes/no tests of whether Irjl ,< 1 or not. Let us
therefore give a quantitative evaluation of the badness of the j th line by finding a
formula that is nearly zero when I rj 1 is small but grows rapidly when I rj I takes values
exceeding 1. Experience with TEX has shown that good results are obtained if we
define the badness of l ine j as follows:

00, if rj is undefined or rj < - 1 ;
Bj = (1001 rjI3, otherwise.

Thus, for example, the individual lines of Figure 1 have badness ratings that are
approximately equal to 0, 7, 68, 18, 5 , 0, 69, 72, 90, 49, 0, respectively. Note that a
line is considered to be ‘infinitely bad’ if rj < -1; this means that glue will never be
shrunk to less than wi -zi. However, values of rj >1 are only finitely bad, so they
will be permitted if there is no better alternative.

A slight improvement over the method used to produce Figure 1 leads to Figure 2.
Once again each line has been broken without looking ahead to the end of the paragraph
and without going back to reconsider previous choices, but this time each break was
chosen so as to minimize the ‘badness plus penalty’ of that line. In other words, when
choosing between alternative ways to end thejth line, given the ending of the previous
line, we obtain Figure 2 if we take the minimum possible value of Pj+nj; here pj is
the badness as defined above, and nj is the amount of penalty pbj if the j th line ends
at a penalty item, otherwise nj = 0. Figure 2 improves on Figure 1 by moving words
down from lines 4, 8, and 10 to the next line.

The method that produces Figure 1 might be called the ‘first-fit’ algorithm, and the
corresponding method for Figure 2 might be called the ‘best-fit’ algorithm. We have
seen that best-fit is superior to first-fit in this particular case, but other paragraphs can
be contrived in which first-fit finds a better solution; so a single example is not sufficient
to decide which method is preferable. In order to make an unbiased comparison of
the methods, we need to get some statistics on their ‘typical’ behavior. Therefore
300 experiments were performed, using the text of Figures 1 and 2, with line widths
ranging from 350 to 649 in unit steps; although the text for each experiment was the
same, the varying line widths made the problems quite different, since line-breaking
algorithms are quite sensitive to slight changes in the measurements. The ‘tightest’

1128 DONALD E. KNUTH AND MICHAEL F. PLASS

In olden times when wish@g still helped one, there
lived a king whose daug&ers were all beaqtgul; and .4ia

the youngst was so beaqtgul that the sun iQelf, which
has seen so much, was astoqished wheqver it shone .444

in her face. Close by the king’s castle lay a great dark -.sea

forpt, and u d e r an old lim%tree in the for& was .TO$

a well, and when the day was very warm, the king’s
child went out into the for8st and sat down by the side -.e14

of the cool fouqtain; and when she was bored she took -.4el
a golden ball, and threw it up on high and caught it; .%04

Figure 3. This is the
‘best possible’ way to break
the lines in the paragraph
of Figures 1 and 2 , in
the sense of fewest total
‘demerits’ as defined in
the text. and this ball was her favorite plaxthing. .001

and ‘loosest’ lines in each resulting paragraph were recorded, as well as the number of
hyphens introduced, and the comparisons came out as follows:

min yj max rj hyphens
first-fit < best-fit 69% 35% 12%
first-fit = best-fit 26% 50% 77%
first-fit > best-fit 5% 15% 11%

Thus, in 69% of the cases, the minimum adjustment ratio rj in the lines typeset
by first-fit was less than the corresponding value obtained by best-fit; the maximum
adjustment ratio in the first-fit lines was less than the maximum for best-fit about 35%
of the time; etc. We can summarize this data by saying that the first-fit method usually
typesets at least one line that is tighter than the tightest line set by best-fit, and it
also usually produces a line that is as loose or looser than the loosest line of best-fit.
The number of hyphens is about the same for both methods, although best-fit would
produce fewer if the penalty for hyphenation were increased. A more detailed study of
the experimental data shows that the superiority of best-fit is especially pronounced in
the cases where the lines are rather narrow.

We can actually do better than both of these methods by finding an ‘optimum’
way to choose the breakpoints. For example, Figure 3 shows how to improve on both
Figures 1 and 2 by making line 6 a bit looser, thereby avoiding a rather tight 7th line
and a fairly loose 10th line. This pattern of breakpoints was found by an algorithm
that will be discussed in detail below. It is globally optimum in the sense of having
fewest total ‘demerits’ over all choices of breakpoints, where the demerits assessed for
the j th line are computed by the formula

I (1 +Pj>’+aj,

(I +pj+nj)’+aj, if nj jO;
S j = (I+pj)’-n;+aj, if --o0<nj<o;

if nj = -m.

Here pj and nj are the badness rating and the penalty, as before; and aj is zero unless
both l i ne j and the previous line ended on flagged penalty items, in which case aj is
the additional penalty assessed for consecutive hyphenated lines (e.g., 3000). We shall
say that we have found the best choice of breakpoints if we have minimized the sum
of Sj over all linesj.

BREAKING PARAGRAPHS INTO LINES 1129

The above formula for Sj is quite arbitrary, like our formula for pj, but it works well
in practice because it has the following desirable properties: (a) Minimizing the sum
of squares of badnesses not only tends to minimize the maximum badness per line, it
also provides secondary optimization; for example, when one particularly bad line is
inevitable, the other line breaks will also be optimized. (b) The demerit function Sj
increases as nj increases, except in the case nj = - co when we don’t need to consider
the penalty because such breaks are forced. (c) Adding 1 to j j instead of using the
badness pj by itself will minimize the total number of lines in cases where there are
breaks with approximately zero badness.

For example, the following table shows the respective demerits charged to the in-
dividual lines of the paragraphs in Figures 1 , 2, and 3:

First fit Best fit Optimum fit
1 1 1

64 64 64
4803 4803 4803

374 96 96
39 33 3 3

2 2 1274
4958 4958 43
5313 11 581
8252 3 166
2497 519 1

1 1 1
26304 10491 7063

In the first-fit and best-fit methods, each line is likely to come out about as badly as
any other; but the optimum-fit method tends to have its bad cases near the beginning,
since there is less flexibility in the opening lines.

Figure 4 on the following page shows another comparison of the same three methods
on the same text, this time with a line width of 500 units. Note that the optimum
algorithm finds a solution that does not hyphenate any words, because of its ability
to ‘look ahead’; the other two methods, which proceed one line at a time, miss this
solution because they do not know that a slightly worse first line leads in this case to
fewer problems later on. The demerits per line in Figure 4 are

~

In this example the
primarily due to the

First fit
1734
4692
3440
3066

3
1

276
5
1

13218

Best fit
1734
4692
3440

9
1

22
210

24
10

1
10143

Optimum fit
2357

6
93 8
21 2

1
2

27
10

47 6
1

403 0
3440 demerits on the third line for ‘first fit’ and ‘best fit’ are
penalty of 50 for an inserted hyphen.

DONALD E. KNUTH AND MICHAEL F. PLASS 1130

(a> In olden times when wishing still helped one, there lived a king -.I41

whose daughters were all beautiful; and the youngest was so
beautiful that the sun itself, which has seen so much, was aston- - . la6

ished whenever it shone in her face. Close by the king’s castle lay
a great dark forest, and under an old lime-tree in the forest was -.lol

a well, and when the day was very warm, the king’s child went
out into the forest and sat down by the side of the cool fountain; -.6a8

and when she was bored she took a golden ball, and threw it up -.aaa

on high and caught it; and this ball was her favorite plaything. .aaO

In olden times when wishing still helped one, there lived a king -.Tal

whose daughters were all beautiful; and the youngest was so .nTT

beautiful that the sun itself, which has seen so much, was aston- -.4as

ished whenever it shone in her face. Close by the king’s castle . a m

lay a great dark forest, and under an old lime-tree in the forest .OaT

was a well, and when the day was very warm, the king’s child .3aa

went out into the forest and sat down by the side of the cool m a

fountain; and when she was bored she took a golden ball, and .a40

threw it up on high and caught it; and this ball was her favorite -.a61

plaything. .am

In olden times when wishing still helped one, there lived a
king whose daughters were all beautiful; and the youngest was .ado

so beautiful that the sun itself, which has seen so much, was .EET

astonished whenever it shone in her face. Close by the king’s .El4

castle lay a great dark forest, and under an old lime-tree in the .OaI

forest was a well, and when the day was very warm, the king’s .lTa

child went out into the forest and sat down by the side of the
cool fountain; and when she was bored she took a golden ball, .aTs

and threw it up on high and caught it; and this ball was her .sn3

favorite plaything. .aoa

Figure 4 . A somewhat wider setting of the same sample paragraph, by (a) the first-fit
method, (b) the best-fit method, and (c) the optimum-fit method. Notice the tight line
followed by a loose line at the beginning of examples (a) and (b) , while no hyphenation
was needed in (c) ; on the other hand, (a) is one line shorter than (b) and (c) .

The first-fit method found a way to set the paragraph of Figure 4 in only nine lines,
while the optimum-fit method yields ten. Publishers who prefer to save a little paper,
as long as the line breaks are fairly decent, might therefore prefer the first-fit solution
in spite of all its demerits. There are various ways to modify the specifications so that
the optimum-fit method will give more preference to short solutions; for example, the
stretchability of the glue on the final line could be decreased from its present huge
size to about the width of the line, thereby making the optimum algorithm prefer final
lines that are nearly full. We could also replace the constant ‘1’ in the definition of
demerits Sj by a variable parameter. The algorithm we shall describe below can in fact
be set up to produce the optimum solution having the minimum number of lines.

The text in these examples is quite straightforward, and we have been setting type
in reasonably wide columns; thus we have not been considering especially difficult or

BREAKING PARAGRAPHS INTO LINES 1131

In the meantime it
knocked a second
time, and cried,
“Princess, youngest
princess, open the
door for me. Do you
not know what you
said to me yesterday
by the cool waters of
the we117 princess, Princess,

open the door for
ma!”

Figure 5 . Here the best-fit method is unable to find a satisfactory way to
break the lines, with respect to justified setting, because the columns are
so narrow. For example, the third line contains only two spaces, and the
third-last line only one; these spaces would have to stretch considerably if
the lines were justified. Thefirst line of this paragraph also illustrates the
‘sticking-out’ problem that arises in unjustified settings.

unusual line-breaking problems. Yet we have seen that an optimizing algorithm can
produce noticeably better results even in such routine cases. The improved algorithm
will clearly be of significant value in more difficult situations, for example when math-
ematical formulas are embedded in the text, or when the lines must be narrow as in
a newspaper.

Anyone who is curious about the fate of the beautiful princess mentioned in Figures 1
through 4 can find the answer in Figure 6, which presents the whole story. The columns
in this example are unusually narrow, allowing only about 21 or 22 characters per
line; a width of about 35 characters is normal for newspapers, and magazines often
use columns about twice as wide as those in Figure 6. The line-at-a-time algorithms
cannot cope satisfactorily with such stringent restrictions, but Figure 6 shows that the
optimizing algorithm is able to break the text into reasonably equal lines.

Incidentally, our line-breaking criteria have been developed with justified text in
mind; but the algorithm has been used in Figure 6 to produce ragged right margins.
Another criterion of badness, which is based solely on the difference between the
desired length 4 and the actual length Lj, should actually be used in order to get
the best breakpoints for ragged-right typesetting, and the space between words should
be allowed to stretch but not to shrink so that Lj never exceeds 4. Furthermore,
ragged-right typesetting should not allow words to ‘stick out’, i.e., to begin to the
right of where the following line ends (see the word ‘it’ in Figure 5). Thus, it turns
out that an algorithm intended for high quality line breaking in ragged-right formats
is actually a little bit harder to write than one for justified text, contrary to the
prevailing opinion that justification is more difficult. On the other hand, Figure 6
indicates that an algorithm designed for justification usually can be tuned to produce
adequate breakpoints when justification is suppressed.

The difficulties of setting narrow columns are illustrated in an interesting way by the
pattern of words

“Now, push your little golden plate nearer . . .”
that appears in the third-last paragraph of Figure 6. We don’t want to hyphenate any
of these words, for reasons stated earlier; and it turns out that all of the four-word
sequences containing the word ‘little’, namely

“Now, push your little
push your little golden
your little golden plate

little golden plate nearer

1132

I N olden times when
wishing still helped
one, there lived a king
whose daughters were
all beautiful; and the
youngest was so beau-
tiful that the sun it-
self, which has seen so
much, was astonished
whenever i t shone in
her face. Close by
the king’s castle lay a
great dark forest, and
under an old lime-tree
in the forest was a
well, and when the
day was very warm,
the king’s child went
out into the forest
and sat down by
the side of the cool
fountain; and when
she was bored she
took a golden ball,
and threw i t up on
high and caught it;
and this ball was her
favorite plaything.

that on one occasion
the princess’s golden
ball did not fall into
the little hand that
she was holding up
for it, but on to the
ground beyond, and
it rolled straight into
the water. The king’s
daughter followed i t
with her eyes, but
i t vanished, and the
well was deep, so
deep that the bottom
could not be seen. At
this she began to cry,
and cried louder and
louder, and could not
be comforted. And
as she thus lamented
someone said to her,
“What ails you, king’s
daughter? You weep
so that even a stone
would show pity.”

She looked round
to the aide from
whence the voice
came, and saw a frog
stretching forth its
big, ugly head from

Now i t so happened

DONALD E. KNUTH AND MICHAEL F. PLASS

the water. “Ah, old
water-splasher, is i t
you?” said she; ”I
am weeping for my
golden ball, which has
fallen into the well.”
“Be quiet, and do not
weep,” answered the
frog. “I can help you;
but what will you give
me if I bring your
plaything up again?”
“Whatever you will
have, dear frog,” said
she; “my clothes, my
pearls and jewels, and
even the golden crown
that I am wearing.”
The frog answered,
“I do not care for your
clothes, your pearls
and jewels, nor for
your golden crown;
but if you will love
me and let me be
your companion and
play-fellow, and sit
by you a t your little
table, and eat off your
little golden plate,
and drink out of your
little cup, and sleep in
your little bed-if you
will promise me this
I will go down below,
and bring you your
golden ball up again.”

“Oh yes,” said she,
“I promise you all
you wish, if you will
but bring me my ball
back again.” But she
thought, “How the
silly frog does talk!
All he does is sit in the
water with the other
frogs, and croak. He
can be no companion
to any human being.”

But the frog, when
he had received thie
promise, put his head
into the water and
sank down; and in a
short while he came
swimming up again
with the ball in his
mouth, and threw it
on the grass. The
king’s daughter was

delighted to see her
pretty plaything once
more, and she picked
i t up and ran away
with it. “Wait, wait,”
said the frog. “Take
me with you. I can’t
run as you can.” But
what did it avail him
t o scream his croak,
croak, after her, as
loudly as he could?
She did not listen to
it, but ran home and
soon forgot the poor
frog, who was forced
to go back into his
well again.

The next day when
she had seated her-
self a t table with the
king and all the cour-
tiers, and was eet-
ing from her little
golden plate, some-
thing came creeping
splish splash, splieh
splash, up the marble
staircase; and when
i t had got to the
top, i t knocked a t
the door and cried,
“Princess, youngest
princess, open the
door for me.” She
ran to see who was
outside, but when
she opened the door,
there sat the frog
in front of it. Then
she slammed the door
to, in great haste,
sat down t o dinner
again, and was quite
frightened. The king
saw plainly that her
heart was beating vi-
olently, and said, “My
child, what are you so
afraid of? Is there per-
chance a giant outside
who wants t o carry
you away?” “Ah, no,”
replied she. “It is no
giant, i t is a disgust-
ing frog.”

“What does a frog
want with you?” “Ah,
dear father, yesterday
as I was in the forest

sitting by the well,
playing, my golden
ball fell into the
water. And because
I cried so, the frog
brought i t out again
for me; and because
he so insisted, I prom-
ised him he should
be my companion, but
I never thought he
would be able to come
out of his water. And
now he is outside
there, and wants to
come in to see me.”

In the meantime
it knocked a sec-
ond time, and cried,
“Princess, youngest
princess, open the
door for me. Do you
not know what you
said t o me yesterday
by the cool waters
of the well? Prin-
cess, youngest prin-
cess, open the door
for me!”

Then said the king,
“That which you have
promised must you
perform. Go and let
him in.” She went
and opened the door,
and the frog hopped
in and followed her,
step by step, to her
chair. There he sat
and cried, “Lift me
up beside you.” She
delayed, until at last
the king commanded
her to do it. Once the
frog was on the chair
he wanted to be on
the table, and when
he was on the table he
said, “Now, push your
little golden plate
nearer to me, that
we may eat together.”
She did this, but i t
was easy to see that
she did not do i t will-
ingly. The frog en-
joyed what he ate, but
almost every mouth-
ful she took choked
her. At length he said,

are too long to fit in one line. Therefore the word ‘little’ will have to appear in a
line that contains only three words and two spaces, no matter what text precedes this
particular sequence.

The final paragraphs of the story present other difficulties, some of which involve
complex interactions spanning many lines of the text, making it impossible to find
breakpoints that would avoid occasional wide spacing if the text were justified. Figure 7
shows what happens whena portion of Figure 6 is, in fact, justified; this is the most
difficult part of the entire story, in which one of the lines in the optimum solution is

BREAKING PARAGRAPHS INTO LINES 1133

‘‘I have eaten and
am satisfied, now I
am tired; carry me
into your little room
and make your little
silken bed ready, and
we will both lie down
and go to sleep.”

The king’s daugh-
ter began to cry, for
she was afraid of the
cold frog, which she
did not like to touch,
and which was now
to sleep in her pretty,
clean little bed. But
the king grew angry
and said, “He who
helped you when you
were in trouble ought
not afterwards to be
despised by you.” So
she took hold of the
frog with two fingers,
carried him upstairs,
and put him in a cor-
ner. But when she was
in bed he crept to her
and said, ‘‘I am tired,
I want to sleep as well
as you; lift me up or I
will tell your father.”
At this she was terri-
bly angry, and took
him up and threw him
with all her might
against the wall.
“Now, will you be
quiet, odious frog?”
said she. But when he
fell down he was no
frog but a king’s son
with kind and beauti-
ful eyes. He by her
father’s will was now
her dear companion
and husband. Then
he told her how he
had been bewitched
by a wicked witch,
and how no one could
have delivered him
from the well but
herself, and that to-
morrow they would
go together into his
kingdom.

Then they went to
sleep, and next morn-
ing when the sun

awoke them, a car-
riage came driving
up with eight white
horses, which had
white ostrich feath-
ers on their heads,
and were harnessed
with golden chains;
and behind stood
the young king’s ser-
vant Faithful Henry.
Faithful Henry had
been so unhappy
when his master was
changed into a frog,
that he had caused
three iron bands to
be laid round his
heart, lest i t should
burst with grief and
sadness. The car-
riage was to conduct
the young king into
his kingdom. Faithful
Henry helped them
both in, and placed
himself behind again,
and was full of joy
because of this de-
liverance. And when
they had driven a part
of the way, the king’s
son heard a cracking
behind him as if some-
thing had broken. So
he turned round and
cried, “Henry, the
carriage is breaking.”

“No, master, i t is
not the carriage. It
is a band from my
heart, that was put
there in my great
pain when you were
a frog and impris-
oned in the well.”
Again and once again
while they were on
their way something
cracked, and each
time the king’s son
thought the carriage
was breaking; but i t
was only the bands
that were spring-
ing from the heart
of Faithful Henry
because his master
was set free and was
so happy.

Figure 6 . The tale of the Frog King, typeset
with quite narrow lines and with ‘ragged right’
margins. The breakpoints were optimally chosen
under the assumption that the lines would
be justijied; a somewhat dzfferent criterion of
optimality would have been more appropriate for
unjustified setting, ye t the lines did turn out to
be of approximately equal width. Quite a f e w
hyphenations were found to be desirable, since
this increases the number of spaces per line and
aids justification, even though the penalty for
hyphenation was increased from 50 to 5000 in
this example.

forced to stretch by the enormous factor 6.833. The only way to typeset that paragraph
without such wide spaces is to leave it unjustified (unless, of course, we change the
problem by altering the text or the line width or the minimum size of spaces).

FURTHER APPLICATIONS
Before we discuss the details of an optimizing algorithm, it is worthwhile to consider
more fully how the basic primitives of boxes, glue, and penalties allow us to solve a

1134 DONALD E. KNUTH AND MICHAEL F. PLASS

and were harpessed w s o
with golden chains; 3.160

and bqhind stood S.OII

the young king’s ser- .W
vant Fai tvul Henry. 1.CW

Faitvul Henry had 3.100
been so uqhappy e.esa
when his maqter was *.ow
changed into a frog, 1.66s

Figure 7. This portion of the story in Figure 6 is the most difficult to
handle, when we try to justify the second-last paragraph using such
narrow columns; even the optimum breakpoints result in wide spaces.

wide variety of typesetting problems. Some of these applications are straightforward
extensions of the simple ideas used in Figures 1 to 4, while others seem at first to be
quite unrelated to the ordinary task of line breaking.

Combining paragraphs
If the desired line widths Z i are not all the same, we might want to typeset two para-

graphs with the second one starting in the list of line lengths where the first one leaves
off. This can be done simply by treating the two paragraphs as one, i.e., appending the
second to the first, assuming that each paragraph begins with an indentation and ends
with finishing glue and a forced break as mentioned above.

Patching
Suppose that a paragraph starts on page 100 of some book and continues on to

the next page, and suppose that we want to make a change to the first part of that
paragraph. We want to be sure that the last line of the new page 100 will end at the
right-hand margin just before the word that appears at the beginning of page 101, so
that page 101 doesn’t have to be redone. It is easy to specify this condition in terms
of our conventions, simply by forcing a line break (with penalty - 00) at the desired
place, and discarding the subsequent text. The ability of the optimum-fit algorithm
to ‘look ahead’ means that it will find a suitable way to patch page 100 whenever it
is possible to do so.

We can also force the altered part of the paragraph to have a certain number of
lines, k, by using the following trick: Set the desired length Z k f l of the (k+ 1)st line
equal to some number 8 that is different from the length of any other line. Then an
empty box of width 8 that occurs between two forced-break penalty items will have to
be placed on line k + 1.

Punctuation in the margins
Some people prefer to have the right edge of their text look ‘solid’, by setting periods,

commas, and other punctuation marks (including inserted hyphens) in the right-hand
margin. For example, this practice is occasionally used in contemporary advertising.
It is easy to get inserted hyphens into the margin: We simply let the width of the
corresponding penalty item be zero. And it is almost as easy to do the same for periods
and other symbols, by putting every such character in a box of width zero and adding
the actual symbol width to the glue that follows. If no break occurs at this glue, the
accumulated width is the same as before; and if a break does occur, the line will be
justified as if the period or other symbol were not present.

BREAKING PARAGRAPHS INTO LINES 1135

Avoiding ‘psychologically bad’ breaks
Since computers don’t know how to think, at least not yet, it is reasonable to wonder

if there aren’t some line breaks that a computer would choose but a human operator
might not, if they somehow don’t seem right. This problem does not arise very often
when straight text is being set, as in newspapers or novels, but it is quite common in
technical material. For example, it is psychologically bad to break before ‘x’ or ‘y’
in the sentence

A function of x is a rule that assigns a value y to every value of x.

A computer will have no qualms about breaking anywhere unless it is told not to; but a
human operator might well avoid bad breaks, perhaps even unconsciously.

Psychologically bad breaks are not easy to define; we just know they are bad. When
the eye journeys from the end of one line to the beginning of another, in the presence
of a bad break, the second word often seems like an anticlimax, or isolated from
its context. Imagine turning the page between the words ‘Chapter’ and ‘8’ in some
sentence; you might well think that the compositor of the book you are reading should
not have broken the text at such an illogical place.

During the first year of experience with TEX, the authors began to notice occasional
breaks that didn’t feel quite right, although the problem wasn’t felt to be severe enough
to warrant corrective action. Finally, however, it became difficult to justify our claim
that TEX has the world’s best line-breaking algorithm, when it would occasionally make
breaks that were semantically annoying; for example, the preliminary TEX manual6
has quite a few of these, and the first drafts of that manual were even worse.

As time went on, the authors grew more and more sensitive to psychologically bad
breaks, not only in the copy produced by TEX but also in other published literature,
and it became desirable to test the hypothesis that computers were really to blame.
Therefore a systematic investigation was made of the first 1000 line breaks in the ACM
Journal of 1960 (which was composed manually by a Monotype operator), compared
to the first 1000 line breaks in the ACMJournaZ of 1980 (which was typeset by one of
the best commercially available systems for mathematics, developed by Penta Systems
International). The final lines of paragraphs, and the lines preceding displays, were
not considered to be line breaks, since they are forced; only the texts of articles were
considered, not the bibliographies. A reader who wishes to try the same experiment
should find that the 1000th break in 1960 occurred on page 67, while in 1980 it occurred
on page 64. The results of this admittedly subjective procedure were a total of

13 bad breaks in 1960,
5 5 bad breaks in 1980.

In other words, there was more than a four-fold increase, from about 1% to a quite
noticeable 5 - 5 % ! Of course, this test is not absolutely conclusive, because the style of
articles in the ACM Journal has not remained constant, but it strongly suggests that
computer typesetting causes semantic degradation when it chooses breaks solely on the
basis of visual criteria.

Once this problem was identified, a systematic effort was made to purge all such
breaks from the second edition of Knuth’s book Seminumerical AZgorithms’, which
was the first large book to be typeset with TEX. It is quite easy to get’the line-
breaking algorithm to avoid certain breaks by simply prefixing the glue item by a

1136 DONALD E. KNUTH AND MICHAEL F. PLASS

penalty with pi = 999, say; then the bad break is chosen only in an emergency, when
there is no other good way to set the paragraph. I t is possible to make the typist’s
job reasonably easy by reserving a special symbol (e.g., &) to be used instead of a
normal space between words whenever breaking is undesirable. Although this problem
has rarely been discussed in the literature, the authors subsequently discovered that
some typographers have a word for it: they call such spaces ‘auxiliary’. Thus there is
a growing awareness of the problem.

It may be useful to list the main kinds of contexts in which auxiliary spaces were
used in Seminumerical AZgorithms, since that book ranges over a wide variety of tech-
nical subjects. The following rules should prove to be helpful to compositors who are
keyboarding technical manuscripts into a computer.

1. Use auxiliary spaces in cross-references:

Theorem&A Algorithm&B Chapter&3 Tablek4 Programs E and&F

Note that no & appears after ‘Programs’ in the last example, since it would be
quite all right to have ‘E and F’ at the beginning of a line.

2. Use auxiliary spaces between a person’s forenames and between multiple sur-
names:

&.&I .&J. Matrix LuiskI. Trabb&Pardo Peter Van&Emde&Boas

A recent trend to avoid spaces altogether between initials may be largely a reaction
against typical computer line-breaking algorithms! Note that it seems better to
hyphenate a name than to break it between words; e.g., ‘Don-’ and ‘ald E. Knuth’
is more tolerable than ‘Donald’ and ‘E. Knuth’. In a sense, rule 1 is a special
case of rule 2, since we may regard ‘Theorem A’ as a name; another example is
‘register&X’.

3. Use auxiliary spaces for symbols in apposition with nouns:

base&b dimensionkd function&f(x) string&s of lengthkl

However, compare the last example with ‘stringks of length k o r more’.

4. Use auxiliary spaces for symbols in series:

1,&2, or&3 a,&b, and&c l,&2, . . . ,&n
5 . Use auxiliary spaces for symbols as tightly-bound objects of prepositions:

of&x from 0 to&l increase z by&l in common with&m

This does not apply with compound objects: For example, type ‘of u&and&v’.

in words:
6. Use auxiliary spaces to avoid breaking up mathematical phrases that are rendered

equals&n less thanks mod&2 modulo&p‘ (given&X)

Also type ‘If &is. . .’, ‘when xkgrows’. Compare ‘is&15’, with ‘is 15ktimes the
height’; and compare ‘for all largekn’ with ‘for all nkgreater than&n,,’.

7 . Use auxiliary spaces when enumerating cases:

(b)&Show that f(x) is (l)&continuous; (2)&bounded.

BREAKING PARAGRAPHS INTO LINES 1137

It would be nice to boil these seven rules down into one or two, and it would be even
nicer if the rules could be automated so that keyboarding could be done without them;
but subtle semantic considerations seem to be involved in many of these instances.
Most examples of psychologically bad breaks seem to occur when a single symbol or a
short group of symbols appears just before or after the break; one could do reasonably
well with an automatic scheme if it would associate large penalties with a break just
before a short non-word, and medium penalties with a break just after a short non-
word. Here ‘short non-word’ means a sequence of symbols that is not very long, yet long
enough to include instances like ‘exercise&l S(b)’, ‘length&~2~”, ‘order&n/2’ followed by
punctuation marks; one should not simply consider patterns that have only one or two
symbols. On the other hand it is not so offensive to break before or after fairly long
sequences of symbols; e.g., ‘exercise 4.3.2-15’ needs no auxiliary space.

Many books on composition recommend against breaking just before the final word
of a paragraph, especially if that word is short; this can, of course, be done by using
an auxiliary space just before that last word, and the computer could insert this
automatically. Some books also give recommendations analogous to rule 2 above,
saying that compositors should try not to break lines in the middle of a person’s
name. But there is apparently only one book that addresses the other issues of psycho-
logically bad breaks, namely a nineteenth-century French manual by A. Frey”, where
the following examples of undesirable breaks are mentioned (vol. 1, p. 110):

Henri&IV M.&Colin le’&sept. art.&25 20&fr.

I t seems to be time to resurrect such old traditions of fine printing.
Recent experience of the authors indicates that it is not a substantial additional

burden to insert auxiliary spaces when entering a manuscript into a computer. The
careful use of such spaces may in fact lead to greater job satisfaction on the part of
the keyboard operator, since the quality of the output can be noticeably improved
with comparatively little work. I t is comforting at times to know that the machine
needs your help.

Author lines
Most of the review notices published in Mathematical Reviews are signed with the

reviewer’s name and address, and this information is typeset flush right, i.e., at the
right-hand margin. If there is sufficient space to put such a name and address at the
right of the final line of the paragraph, the publishers can save space, and at the same
time the results look better because there are no strange gaps on the page. During
recent years the composition software used by the American Mathematical Society
was unable to do this operation, but the amount of money saved on paper made it
economical for them to pay someone to move the reviewer-name lines up by hand
wherever possible, applying scissors and (real) glue to the computer output.

This is a case where the name and address fit in nicely
with the review. A. Reviewer (Ann Arbor, Mich.)

But sometimes an extra line must be added.
N. Bourbaki (Paris) Figure 8. The M R problem.

1138 DONALD E. KNUTH AND MICHAEL F. PLASS

Let us say that the ‘MR problem’ is to typeset the contents of a given box flush right
at the end of a given paragraph, with a space of at least w between the paragraph and
the box if they occur on the same line. This problem can be solved entirely in terms
of the box/glue/penalty primitives, as follows:

(text of the given paragraph)
penalty(0,00, 0)
glue(0,100000,0)
penalty(0, 50, 0)
g w w , 070)
box(0)
penalty(0, co, 0)
glue(0,100000,0)
(the given box)
penalty(0, - m,0)

The final penalty of - co forces the final line break with the given box flush right; the
two penalties of + co are used to inhibit breaking at the following glue items. Thus,
the above sequence reduces to two cases: whether or not to break at the penalty of 50.
If a break is taken there, the ‘glue(w, 0 ,O) ’ disappears, according to our rule that each
line begins with a box; the text of the paragraph preceding the penalty of 50 will be
followed by ‘glue(0, 100000, O)’, which will stretch to fill the line as if the paragraph
had ended normally, and the given box on the final line will similarly be preceded by
‘glue(0, 100000,O)’ to fill the gap at the left. On the other hand if no break occurs at
the penalty of 50, the net effect is to have the glues added all together, producing

(text of the given paragraph)
glue(w, 200000,O)
(the given box)

so that the space between the paragraph and the box is w or more. Whether the break is
chosen or not, the badness of the two final lines or the final line will be essentially zero,
because so much stretchability is present. Thus the relative cost differential separating
the two alternatives is almost entirely due to the penalty of 50. The optimum-fit
algorithm will choose the better alternative, based on the various possibilities it has
for setting the given paragraph; it might even make the given paragraph a little bit
tighter than its usual setting, if this words out best.

Ragged right margins
We observed in Figure 6 that an optimum line-breaking algorithm intended for

justified text does a fairly good job at making lines of nearly equal length even when
the lines aren’t justified afterwards. However, it is not hard to construct examples
in which the justification-oriented method makes bad decisions, since the amount of
deviation in line width is weighted by the amount of stretchability or shrinkability
that is present. A line containing many words, and therefore containing many spaces
between words, will not be considered problematical by the justification criteria even
if it is rather short or rather long, because there is enough glue present to stretch or
shrink gracefully to the correct size. Conversely, when there are few words in a line, the

BREAKING PARAGRAPHS INTO LINES 1139

algorithm will take pains to avoid comparatively small deviations. This is illustrated
in Figure 5 , which actually reads better than the corresponding paragraph in Figure 6
(except for the word that sticks out on the first line); hyphens were inserted into the
paragraph of Figure 6 in order to create more interword space for justification.

Although the box/glue/penalty model appears at first glance to be oriented solely to
the problem of justified text, we shall now see that it is powerful enough to be adapted
to the analogous problem of unjustified typesetting: If the spaces between words are
handled in the right way, we can make things work out so that each line has the same
amount of stretchability, no matter how many words are on that line. The idea is to
let spaces between words be represented by the sequence

glue(0,18,0)
penalty(0, 0 ,O)
glue(6, -18,O)

instead of the ‘glue(6,3,2)’ we used for justified typesetting. We may assume that there
is no break at the ‘glue(O,18,0)’ in the sequence, because it will always be at least as
good for the algorithm to break at the ‘penalty(0, 0, O)’, when 18 units of stretchability
are present. If a break occurs at the penalty, there will be a stretchability of 18 units
on the line, and the ‘glue(6, -18,O)’ will be discarded after the break so that the next
line will begin flush left. On the other hand if no break occurs, the net effect is to have
glue(6,0,0), representing a normal space with no stretching or shrinking.

Note that the stretchability of -18 in the second glue item has no physical signifi-
cance, but it nicely cancels out the stretchability of +18 in the first glue item. Negative
stretchability has several interesting applications, so the reader should study this
example carefully before proceeding to the more elaborate constructions below.

Optional hyphenations in unjustified text can be specified in a similar way; instead
of using ‘penalty(6,50,1)’ for an optional 6-unit hyphen having a penalty of 50, we
can use the sequence

penalty(0, 00 , 0)
glue(0,18,0)
penalty(6,500,1)
glue(0, -18,O).

The penalty has been increased here from 50 to 500, since hyphenations are not as
desirable in unjustified text. After the breakpoints have been chosen using the above
sequences for spaces and for optional hyphens, the individual lines should not actually
be justified, since a hyphen inserted by the ‘penalty(6,500,1)’ would otherwise appear
at the right margin.

I t is not difficult to prove that this approach to ragged-right typesetting will never
lead to words that ‘stick out’ in the sense mentioned above; the total demerits are
reduced whenever a word that sticks out is moved to the following line.

Centered text
Occasionally we want to take some text that is too long to fit on one line and break

it into approximately equal-size parts, centering the parts on individual lines. This is
most often done when setting titles or captions, but it can also be applied to the text
of a paragraph, as shown in Figure 9.

1140 DONALD E. KNUTH AND MICHAEL F. PLASS

In olden times when wishing still helped one, there lived a king
whose daughters were all beautiful; and the youngest was

so beautiful that the sun itself, which has seen so much, was
astonished whenever it shone in her face. Close by the king’s castle
lay a great dark forest, and under an old lime-tree in the forest was

a well, and when the day was very warm, the king’s child went
out into the forest and sat down by the side of the cool fountain;
and when she was bored she took a golden ball, and threw it up
on high and caught it; and this ball was her favorite plaything.

Figure 9 . ‘Ragged-centered‘ text: The optimum-$t algorithm will produce special efJects like this,
when appropriate combinations of box/gluelpenalty items are used for the spaces between words.

Boxes, glue, and penalties can perform this operation, in the following way: (a) At
the beginning of the paragraph, use ‘glue(O,l8,0)’ instead of an indentation. (b) For
each space between words in the paragraph, use the sequence

glue(0,18,0)
penalty(O,O, 0)
glue(6, -36’0)
box(0)
penalty(O,cc, 0)
glue(0,18,0).

(c) End the paragraph with the sequence

glue(0,18,0)
penalty(0, - CO, 0).

The tricky part of this method is part (b), which ensures that an optional break
a t the ‘penalty(O,O,O)’ puts stretchability of 18 units at the end of one line and at
the beginning of the next. If no break occurs, the net effect will be glue(0,18,0)+
glue(6, -36,0)+glue(O, 18,O) = glue(6,0,0), a fixed space of 6 units. The ‘box(0)’
contains no text and occupies no space; its function is to keep the ‘glue(O,18,0)’ from
disappearing at the beginning of a line. The ‘penalty(0, 0 , O) ’ item could be replaced
by other penalties, to represent breakpoints that are more or less desirable. However,
this technique cannot be used together with optional hyphenation, since our box/glue/
penalty model is incapable of inserting optional hyphens anywhere except at the right
margin when lines are justified.

The construction used here essentially minimizes the maximum gap between the
margins and the text on any line; and subject to that minimum it essentially minimizes
the maximum gap on the remaining lines; and so forth. The reason is that our defini-
tions of ‘badness’ and ‘demerits’ reduce in this case so that the sum of demerits for
any choice of breakpoints is approximately proportional to the sum of the sixth powers
of the individual gaps.

ALGOL-like languages
One of the most difficult tasks in technical typesetting is to get computer programs

to look right. In addition to the complications of mathematical formulas and a variety

BREAKING PARAGRAPHS INTO LINES 1141

const n = 10000;
var sieve, primes :

setof2..n;
next, j : integer;

begin { initialize }
sieve := [2. . n];
primes := [I ;
nezt := 2;
repeat { find next

prime }
while not (nezt in

sieve) do

succ (next);

primes + [nezt];

next :=

primes :=

j := next;
while j <= n do

begin sieve :=

j := j + next
end

{ eliminate }

sieve - b];

until sieve = [I
end.

eonst n = 10000;
var sieve, primes : set of 2 . . n;

next, j : integer;
begin { initialize }
sieve := [2. . n]; primes := [1; next := 2;
repeat { find next prime }

while not(nezt in sieve) do next := succ(next);
primes := primes + [next]; j := next;
while j <= n do { eliminate }
begin sieve := sieve - b]; j := j + nezt
end

until sieve = []
end.

Figure 10. These two settings of a sample P A S C A L program
were made from identical input specifications in the
boxlgluelpenalty model; in the jirst case the lines were set 100
points wide, and in the second case the width was 250points. Al l of
the line-breaking and identation was produced automatically by
the optimum-fit algorithm, which has no specific knowledge of
P A S C A L . Compilation of the P A S C A L source code into boxes,
glue, and penalties was done mechanically.

of typestyles and spacing conventions, it is important to indent the lines suitably
in order to display the program structure. Sometimes a single statement must be
broken across several lines; sometimes a number of short statements should be grouped
together on a single line. Authors who attempt to publish programs in journals that
are not accustomed to computer science material soon discover that very few printing
establishments have the expertise necessary to handle ALGOL-like languages in a
satisfactory way.

1142 DONALD E. KNUTH AND MICHAEL F. PLASS

Once again, the concepts of boxes, glue, and penalties come to the rescue: I t turns out
that our line-breaking methods developed for ordinary text can be used without change
to do the typesetting of programs in ALGOL-like languages. For example, Figure 10
shows a typical program taken from the PASCAL manual’’ that has been typeset
assuming two different column widths. Although these two settings of the program do
not look very much alike, they both were made from exactly the same input, specified
in terms of boxes, glue, and penalties; the only difference was the specification of line
width. (The input text in this example was prepared by a computer program called
BLAISEI2, which will translate any PASCAL source text into a TEX file that can be
incorporated within other documents.)

The box/glue/penalty specifications that lead to Figure 10 involve constructions
similar to those we have seen above, but with some new twists; it will be sufficient for
our purposes merely to sketch the ideas instead of dwelling on the details. One key
point is that the breaks are chosen by the minimum-demerits criteria we have been
discussing, but the lines are not justified afterwards (i.e., the glue does not actually
stretch or shrink). The reason is that relations and assignment statements are processed
by TEX’S normal ‘math mode’, which allows line breaks to occur in various places but
without any special constructions particular to this application, so that justification
would have the undesirable effect of putting all such breaks at the right margin. The
fact that justification is suppressed actually turns out to be an advantage in this case,
since it means that we can insert glue stretching wherever we like, within a line, if it
affects the ‘badness’ formula in a desirable way.

Each line in the wider setting of Figure 10 is actually a ‘paragraph’ by itself, so it
is only the narrower setting that shows the line-breaking mechanism at work. Every
‘paragraph’ has a specified amount of indentation for its first line, corresponding to its
position in the program, as a given number t of ‘tab’ units; the paragraph is also given
a hanging indentation of t + 2 tab units. This means that all lines after the first are
required to be two tabs narrower than the first line, and they are shifted two tabs to
the right with respect to that line. In some cases (e.g., those lines beginning with ‘var’
or ‘while’) the offset is three tabs instead of two.

The paragraph begins with ‘glue(0, 100000, O)’, which has the effect of providing
enough stretchability that the line-breaking algorithm will not wince too much at
breaks that do not square perfectly with the right margin, at least not on the first line.
Special breaks are inserted at places where TEX would not normally break in math
mode; e.g., the sequence

penalty(0, co , 0)
glue(0,lOOOOO,O)
penalty(0,50,0)
glue(0, -100000,O)
box(0)
penalty(O,oo, 0)
glue(0,lOOOOO,O)

has been inserted just before ‘primes’ in the v a r declaration. This sequence allows
a break with penalty 50 to the next line, which begins with plenty of stretchability.
A similar construction is used between assignment statements, for example between
‘sieve : = [2 . . n];’ and ‘primes : = []’, where the sequence is

BREAKING PARAGRAPHS INTO LINES 1143

penalty(O,oo, 0)
glue(0,100000,0)
penalty(0, 0 , O)
glue(6 + 2w, -100000,O)
box(0)
penalty(0, 00, 0)
glue(-2w, 100000,O);

here w is the width of a tab unit. If a break occurs, the following line begins with
‘glue(-2w, 100000, O)’, which undoes the effect of the hanging indentation and effec-
tively restores the state at the beginning of a paragraph. If no break occurs, the net
effect is ‘glue(6,lOOOOO,O)’, a normal space.

No automatic system can hope to find the best breaks in programs, since an under-
standing of the semantics will indicate that certain breaks make the program clearer
and reveal its symmetries better. However, dozens of experiments on a wide variety
of PASCAL source texts have shown that this approach is surprisingly effective; fewer
than 1% of the line-breaking decisions have been overridden by authors of the
programs in order to provide additional clarity.

A complex index
The final application of line breaking that we shall study is the most difficult one

that has so far been encountered by the authors; it was solved only after acquiring more
than two years of experience with more straightforward line-breaking tasks, since the
full power of the box/glue/penalty primitives was not immediately apparent. The task
is illustrated in Figure 11, which shows excerpts from a ‘Key Index’ in Mathematical
Reviews. Such an index now appears at the end of each volume, together with an
‘Author Index’ that has a similar format.

As in Figure 10, the examples in Figure 1 1 were generated by the same source input
that was typeset using different line widths, in order to indicate the various possibilities
of breakpoints. Each entry in the index consists of two parts, the name part and the
reference part , both of which might be too long to fit on a single line. If line breaks
occur in the name part, the individual lines are to be set with a ragged right margin,
but breaks in the reference part are to produce lines with a ragged left margin. The
two parts are separated by leaders, a row of dots that expands to fill the space between
them; leaders are introduced by a slight generalization of glue that typesets copies
of a given box into a given space, instead of leaving that space blank. A hanging
indentation is applied to all lines but the first, so that the first line of each entry is
readily identifiable. One of the goals in breaking such entries is to minimize the white
space that appears in ragged-right or ragged-left lines. A subsidiary goal is to minimize
the number of lines that contain the reference part; for example, if it is possible to fit
all of the references on one line, the line-breaking algorithm should do so. The latter
event might mean that a break occurs after the leaders, with the references starting
on a new line; in such a case the leaders should stop a fixed distance w 1 from the right
margin. Furthermore, the ragged-right lines should all be at least a fixed distance w 2
from the right margin, so that there is no chance of confusing part of the name with
part of the reference material. The individual boxes to be replicated in the leaders
are w3 units wide.

1144 DONALD E. KNUTH AND MICHAEL F. PLASS

ACM Symposium on Principles of Programming
Languages, Third (Atlanta, Ga., 1976), selected
papers*1858

ACM Symposium on Theory of Computing, Eighth
Annual (Hershey, Pa., 1976)1879, 4813,
5414, 6918, 6936, 6937, 6946, 6951, 6970, 7619,
9605, 10148, 11676, 11687, 11692, 11710, 13869

Software See t1858

ACM Symposium on Principles of
Programming Languages, Third
(Atlanta, Ga., 1976), selected papers
................................. *1858

ACM Symposium on Theory of
Computing, Eighth Annual
(Hershey, Pa., 1976)

1879, 4813, 5414, 6918, 6936, 6937,
6946, 6951, 6970, 7619, 9605, 10148,

11676, 11687, 11692, 11710, 13869
Software See *1858

ACM Symposium
on Principles of
Programming
Languages, Third
(Atlanta, Ga., 1976),
selected papers *1858

ACM Symposium on
Theory of Computing,
Eighth Annual
(Hershey, Pa., 1976)
........ 1879, 4813, 5414,

6918, 6936, 6937, 6946,
6951, 6970, 7619, 9605,

10148, 11676, 11687,
11692, 11710, 13869

Software See *1858

Figure 1 1 . These three extracts f rom a ‘ K e y Index’ were all
typset f rom identical input, with respective column widths of
225 points, 175 points, and 125 points. Note the combination
of ragged right and ragged left setting, and the ‘dot leaders’.

The ground rules are illustrated in Figure 1 1 , where there is a hanging indentation
of 27 units, and w1 = 45, w2 = 9, w 3 =7-2; the digits are 9 units wide, and the
respective column widths are 405 units, 3 15 units, and 225 units. The entry for ‘Theory
of Computing’ shows three possibilities for the leader dots: They can share a line with
the end of the name part and the beginning of the reference part, or they can end a
line before the reference part or begin a line after the name part.

Here is how all this can be encoded with boxes, glue, and penalties: (a) Each blank
space in the name part is represented by the sequence

penalty(0, cc, 0)

penalty(O,O, 0)
glue(6-w2, -18,2)

g w w , , 1890)

which yields ragged right margins and spaces that can shrink from 6 units to 4 units
if necessary. (b) The transition between name part and reference part is represented

BREAKING PARAGRAPHS INTO LINES

by sequence (a) followed by

1145

box(0)
penalty(0, co , 0)
leaders(3w3, 100000,3w,)
g w w , 7 070)
penalty(0, 0,O)
glue(-ww,, -18,O)
box(0)
penalty(0, co, 0)
glue(0,18,0).

(c) Each blank space in the reference part is represented by the sequence

penalty(0,999,0)
glue(6, - 18,2)
box(0)
penalty(0, 00 , 0)
glue(0,18, O),

which yields ragged left margins and 6-unit to 4-unit spaces.
Parts (a) and (c) of this construction are analogous to things we have seen before;

the 999-point penalties in (c) tend to minimize the total number of lines occupied by
the reference part. The most interesting aspect of this construction is the transition
sequence (b), where there are four possibilities: If no line breaks occur in (b), the net
result is

(name part) glue(6,0,2) (leaders) (reference part),

which allows leader dots to appear between the name and reference parts on the current
line. If a line break occurs before the leaders, the net result is

(name part) glue(6,0,2)
(leaders) (reference part),

so that we have a break essentially like that after a blank space in the name part,
and the dot leaders begin the following line. If a line break occurs after the leaders,
the net result is

(name part) glue(6,0,2) (leaders) glue(wl, 0,O)
glue(0,18,0) (reference part),

so that we have a break essentially like that after a blank space in the reference part but
without the penalty of 999; the leaders end w 1 units from the right margin. Finally,
if breaks occur both before and after the leaders in (b), we have a situation that always
has more demerits than the alternative of breaking only before the leaders.

When the choice of breakpoints leaves room for at least 3w3 units of leaders, we
are sure to have at least two dots, but we might not have three dots since leader dots
on different lines are aligned with each other. The glue in other blank spaces on the
line with the leaders will shrink if there is less than 3w3 of space for the leaders, and

1146 DONALD E. KNUTH AND MICHAEL F. PLASS

this tends to make it more likely that the leader dots will not disappear altogether;
however, in the worst case the space for leaders will shrink to zero, so there might
not be any dots visible. I t would be possible to ensure that all the leaders contain at
least two dots, by simply setting the shrink component of the leader item in (b) to
zero. This would improve the appearance of the resulting output; but unfortunately
i t would also increase the length of the author indexes by about 15 per cent, and such
an expense would probably be prohibitive.

A preliminary version of this construction has been used with TEX to prepare the
indexes of Mathematical Reviews since November, 1979. However, the items ‘box(0)
penalty(0, co, 0)’ were left out of (b), for compatibility with earlier indexes prepared by
other typesetting software; this means that the leaders disappear completely whenever
a break occurs just before them, and the resulting indexes have unfortunate gaps of
white space that spoil their appearance.

A N ALGEBRAIC APPROACH
The examples we have just seen show that boxes, glue, and penalties are quite versatile
primitives that allow a user to obtain a wide variety of effects without extending the
basic operations needed for ordinary typesetting. However, some of the constructions
may have seemed like ‘magic’; they work, but it isn’t clear how they were ever conceived
in the first place. We shall now study a fairly systematic way to deal with these
primitives in order to assess their full potentiality; this brief discussion is independent
of the remainder of the paper and can be omitted.

In the first place it is clear that

box(w) box(w’) = box(w + w’),

if we ignore the contents of the boxes and consider only the widths; only the widths
enter into the line-breaking criteria. This formula says that any two consecutive boxes
can be replaced by a single box without affecting the choice of breakpoints, since breaks
do not occur at box items. Similarly it is easy to verify that

glue(w, y, z) glue(w’, y’, z’) = glue(w + w’, y + y’, z + z‘),

since there will be no break at glue(w’,y‘,z’), and since a break at glue(w,y,z) is
equivalent to a break at glue(w+w’,y+y’,z+z’).

Under certain circumstances we can also combine two adjacent penalty items into a
single one; for example, if - 00 < p, p’< + 00 we have

penalty(w,p,f) penalty(w,p’,f) = penalty(w, min(p,p’),f)

with respect to any optimal choice of breakpoints, since there are fewer demerits asso-
ciated with the smaller penalty. However, it is not always possible to replace the general
sequence ‘penalty(w,p, f) penalty(w’,p’,f’)’ by a single penalty item.

We can assume without loss of generality that all box items are immediately followed
by a sequence of the form ‘penalty(O,oo, 0) glue(w, y, z)’. For if the box is followed by
another box, we can combine the two; if it is followed by a penalty item with p < 00,

we can insert ‘penalty(0, CC, 0) glue(0, 0,O)’; if it is followed by ‘penalty(w, co ,f)’ we can

BREAKING PARAGRAPHS INTO LINES 1147

assume that w = f = 0 and thgt the following item is glue; and if the box is followed
by glue, we can insert ‘penalty(0, 00, 0) glue(0, 0, O)penalty(O, 0,O)’. Furthermore we can
delete any penalty item with p = if it is not immediately preceded by a box item.

Thus, any sequence of box/glue/penalty items can be converted into a ‘normal form’,
where each box is followed by a penalty of CO, each penalty is followed by glue, and
each glue is either followed by a penalty < co or by a box. We assume that there is
only one penalty - 00, and that it is the final item, since a forced line break effectively
separates a longer sequence into independent parts. It follows that the normal-form
sequences can be written

XIXz.. . X,penalty(w, -00, j-,)

where each Xi is a sequence of items having the form

box(w)penalty(O, 00, 0) glue(w’,y, z)

or the form

penalty(v, P,f 1 glue(w, YJ z).

Let us use the notation bpg(w+w’,y,z) for the first of these two forms, noting
that it is a function of w+wr rather than of w and w‘ separately; and let us write
pg(v,p,f, w,y, z) for X’s of the second form. We can assume that the sequence of X’s
contains no two bpg’s in a row, since

bpg(w,y,z) bpg(w’,y’,z’) = bpg(w+w’,y+y’,z+z‘).

Familiarity with this algebra of boxes, glue, and penalties makes it a fairly simple
matter to invent constructions for special applications like those listed above, whenever
such constructions are possible. For example, let us consider a generalization of the
problems arising in ragged-right, ragged-left, and ragged-centered text: We wish to
specify on optional break between words such that if no break occurs we will have
the sequence

(end of textl) glue(wl,yl, zl) {beginning of text2)

on one line, while if a break does occur we will have

(end Of text 1) 9 y2 J z 2) p J f)
glue(w3,y3, z3) (beginning of text,)

on two lines. A consideration of normal forms shows that the most general thing we
can do is to insert the sequence

bpg(wJy> z, pg(w,>P,f, w:Y: z‘) bpg(w’:y’: z r f)

between text, and textz, where no additional text is associated with the two inserted
bpg’s. Our job reduces therefore to determining appropriate values of w, y, z, w’, y’, z’,
w”, y”, zff, and these can be obtained immediately by solving the equations

W+WwI+W” = wl, y+yf+yrr =y1, Z + z r + X ’ I = z,;

w’f = w 39 Y” = Y3, zrf = 273.

w = w2, Y =y2, z = z,;

1148 DONALD E. KNUTH AND MICHAEL F. PLASS

Once a construction has been found in this way, it can be simplified by undoing
the process we have used to derive normal forms and by using other properties of
box/glue/penalty algebra. For example, we can always delete the penalty co item in
a sequence like

if y 2 0 and z 2 0 and p < 0, since a break at the glue is always worse than a break
at the penalty p .

INTRODUCTION T O THE ALGORITHM

The general ideas underlying the optimum-fit algorithm for line breaking can probably
be understood best by considering an example. Figure 12 repeats the paragraph of
Figure 4(c) and includes little vertical marks to indicate ‘feasible breakpoints’ found
by the algorithm. A feasible breakpoint is a place where the text of the paragraph from
the beginning to this point can be broken into lines whose adjustment ratio does not
exceed a given tolerance; in the case of Figure 12, this tolerance was taken to be unity.
Thus, for example, there is a tiny mark after ‘fountain;’ since there is a way to set the
paragraph up to this point with ‘fountain;’ at the end of the 7th line and with none of
lines 1 to 7 having a badness exceeding 100 (cf. Figure 4(a)).

The algorithm proceeds by locating all of the feasible breakpoints and remembering
the best way to get to each one, in the sense of fewest total demerits. This is done
by keeping a list of ‘active’ breakpoints, representing all of the feasible breakpoints
that might be a candidate for future breaks. Whenever a potential breakpoint b is
encountered, the algorithm tests to see if there is any active breakpoint a such that
the line from a to b has an acceptable adjustment ratio. If so, b is a feasible breakpoint
and it is appended to the active list. The algorithm also remembers the identity of
the breakpoint a that minimizes the total demerits, when the total is computed from
the beginning of the paragraph, through a, to 6 . When an active breakpoint a is
encountered for which the line from a to b has an adjustment ratio less than -1 (i.e.,
when the line can’t be shrunk to fit the desired length), breakpoint a is removed from
the active list. Since the size of the active list is essentially bounded by the maximum
number of words per line, the running time of the algorithm is bounded by this
quantity (which usually is small) times the number of potential breakpoints.

For example, when the algorithm begins to work on the paragraph in Figure 12,
there is only one active breakpoint, representing the beginning of the first line. I t is
infeasible to have a line starting there and ending at ‘In’, or ‘olden’, . . . , or ‘lived’,
since the glue between words does not accumulate enough stretchability in such short
segments of the text; but after the next word ‘a’ is encountered, a feasible breakpoint
is found. Now there are two active breakpoints, the original one and the new one.
After the next word ‘king’, there are three active breakpoints; but after the next word
‘whose’, the algorithm sees that it is impossible to squeeze all of the text from the
beginning up to ‘whose’ on one line, so the initial breakpoint becomes inactive and
only two active ones remain.

Skipping ahead, let us consider what happens when the algorithm considers the
potential break after ‘fountain;’. At this stage there are eight active breakpoints,
following the respective text boxes for ‘child’, ‘went’, ‘out’, ‘side’, ‘of‘, ‘the’, ‘cool’,

BREAKING PARAGRAPHS INTO LINES 1149

I In olden times when wisung still helped one, there lived a’
king‘ whose daughters were all beaqtqul; and the young@ wad .a46

sd bea\tiJul that the sun itgelf, which has seen so much, wad .6sT

asto4shed wheqper it shone in her face. Close by the king’$.s14
castle‘ lay a great dark forpt, and uqler an old lim%tree in’ the‘ .OaT

fo?’st‘ wad d well, and when the day was very warm, the‘ king’s‘ .I73
child went’ out’ into the for-st and sat down by the side‘ of thd -346

cool’ fouqtain: and when she was bored she took a golden’ ball,’ .aTs

and threw‘ it‘ up’ on’ high and caught it; and this ball wad he? .693

favorjtd pla&hing. .om

Figure 12. Tiny vertical marks show ‘feasible breakpoints’ where it is possible to break
in such a way that no spaces need to stretch more than their given stretchability.

and ‘foun-’. The line starting after ‘child’ and ending with ‘fountain;’ would be too
long to fit, so ‘child’ becomes inactive. Feasible lines are found from ‘went’ or ‘out’
to ‘fountain;’ and the demerits of those lines are 276 and 182, respectively; however,
the line from ‘went’ actually turns out to be preferable, since there are substantially
fewer total demerits from the beginning of the paragraph to ‘went’ than to ‘out’. Thus,
‘fountain;’ becomes a new active breakpoint. The algorithm stores a pointer back from
‘fountain;’ to ‘went’, meaning that the best way to get to a break after ‘fountain;’ is
to start with the best way to get to a break after ‘went’.

The computation of this algorithm can be represented pictorially by means of the
network in Figure 13 , which shows all of the feasible breakpoints together with the
number of demerits charged for each feasible line between them. The object of the
algorithm is to compute the shortest path from the top of Figure 13 to the bottom,
using the demerit numbers as the ‘distances’ corresponding to individual parts of the
path. In this sense, the job of optimal line breaking is essentially a special case of the
problem of finding shortest paths in an acyclic network; the line-breaking algorithm is
slightly more complex only because it must construct the network at the same time as
it is finding the shortest path.

Notice that the best-fit algorithm can be described very easily in terms of a network
like Figure 13: it is the algorithm that simply chooses the shortest continuation at every
step. And the first-fit algorithm can be characterized as the method of always taking
the leftmost branch having a negative adjustment ratio (unless it leads to a hyphen,
in which case the rightmost non-hyphenated branch is chosen whenever there is a
feasible one). From these considerations we can readily understand why the optimum-
fit algorithm tends to do a much better job.

Sometimes there is no way to continue from one feasible breakpoint to any other.
This situation doesn’t occur in Figure 13, but it would be present below the word ‘so’
if we had not permitted hyphenation of ‘astonished’. In such cases the first-fit and
best-fit algorithms must resort to infeasible lines, while the optimum-fit algorithm can
usually find another way through the maze.

On the other hand, some paragraphs are inherently difficult, and there is no way to
break them into feasible lines. In such cases the algorithm we have described will find
that its active list dwindles until eventually there is no activity left; what should be
done in such a case? It would be possible to start over with a more tolerant attitude

1150 DONALD E. KNUTH AND MICHAEL F. PLASS

Figure 13. This network shows the feasible breakpoints and the number of demerits
charged when going from one breakpoint to another. The ‘shortest path’from the top to
the bottom corresponds to the best way to typeset the paragraph, if w e regard the demerits
as distances.

toward infeasibility (a higher threshold value for the adjustment ratios). Alternatively,
TEX takes the attitude that the user wants to make some manual adjustment when
there is no way to meet the specified criteria, so the active list is forcibly prevented from
becoming empty by simply declaring a breakpoint to be feasible if it would otherwise
leave the active list empty. This results in an overset line and an error message that
encourages the user to take corrective action.

Figure 14 shows what happens when the algorithm allows quite loose lines to be
feasible; in this case a line is considered to be infeasible only if its adjustment ratio
exceeds 10 (so that there would be more than two ems of space between words).
Such a setting of the tolerances would be used by people who don’t want to make
manual adjustments to paragraphs that cannot be set well. The tiny marks rhat
indicate feasible breakpoints have varying lengths in this illustration, with longer marks

BREAKING PARAGRAPHS INTO LINES 1 1 5 1

' In olden times when wiswng still helped one,' there lived a'
kind whose daughters were all beau&ijful; and the young& wad .*A6

so' bea<ti;ful' that' the sun i$elf,' which' has' seen so much,' wad .66T

astonjshed whedever it' shone in her' face.' Close' by' the' king'$.614

castle' lay' 8 great' dark' forkst,' and' udder' ad old lim%,ree' id the' .OIT

fo?'st' wad a' well,' and' when the day wad ved warm,' the' king'$. I T S

child went' out' into the forkst and sat' down' by' the' side' of thd .346

cool' foudtain; and' when she wad bored she' tooli a' golden' ball,' .lTK

and thred it' up' on' high' and caught! it: and thid balr wad he? .603

favo4td play$hing. .ooa

Figure 14. When the tolerance is raised to 10 times the stretchability, more breakpoints
become feasible, and there are many more possibilities to explore.

indicating places that can be reached via better paths; the tiny dots are for breakpoints
that are just barely feasible. Notice that all of the potential breakpoints in Figure 14
are marked, except for a few in the first two lines; so there are considerably more
feasible breakpoints here than there were in Figure 12, and the network corresponding
to Figure 13 will be much larger. There are 836,272,858 feasible ways to set the para-
graph when such wide spaces are tolerated, compared to only 81 ways in Figure 12.
However, the number of active nodes will not be significantly bigger in this case than
it was in Figure 12, because it is limited by the length of a line, so the algorithm
will not run too much more slowly even though its tolerance has been raised and the
number of possible settings has increased enormously. For example, after 'fountain;'
there are now 17 active breakpoints instead of the 8 present before, so the processing
takes only about twice as long although huge numbers of additional possibilities are
being taken into account.

When the threshold allows wide spacing, the algorithm is almost certain to find a
feasible solution, and it will report no errors to the user even though some rather loose
lines may have been necessary. The user who wants such error messages should set the
tolerance lower; this not only gives warnings when corrective action is needed, it also
improves the algorithm's efficiency.

One of the important things to note about Figure 14 is that breakpoints can become
feasible in completely different ways, leading up to different numbers of lines before the
breakpoint. For example, the word 'seen' is feasible both at the end of line 3:

'In olden. . . lived/a . . . young-/est . . . seen'

and at the end of line 4:

'In olden . . . helped/one, . . . were/all . . . beau-/tiful . . . seen',

although 'seen' was not a feasible break at all in Figure 12. The breaks that put 'seen'
at the end of line 3 have substantially fewer demerits than those putting it on line 4
(approximately 1.68 x lo6 versus 1-28 x lo1'), so the algorithm will remember only
the former possibility. This is an application of the dynamic-programming 'principle
of optimality', which is responsible for the efficiency of our algorithm4: the optimum
breakpoints of a paragraph are always optimum for the subparagraphs they create.

1152 DONALD E. KNUTH AND MICHAEL F. PLASS

The area of a
circle is a mean propor-

tional between any two regular
and similar polygons of which one

circumscribes it and the other is iso-
perimetric with it. In addition, the area

of the circle is less than that of any cir-
cumscribed polygon and greater than that
of any isoperimetric polygon. And further,
of these circumscribed polygons, the one
that has the greater number of sides has
a smaller area than the one that has

hand, the isoperimetric polygon
that has the greater num-

ber of sides is the
larger.

a lesser number; but, on the other

- Galileo Galilei (1638)

1
turn, in the

following treatises, to
various uses of those triangles

whose generator is unity. But I leave out
many more than I include; it is extraurdinary how

fertile in properties this triangle is. Everyone can try his hand.

- Blaise Pascal (1654)

Figure 15. Examples of line breaking with lines of different sizes.

But the interesting thing is that this economy of storage would not be possible if the
future lines were not all of the same length, since differing line lengths might well
mean that it would be much better to put ‘seen’ on line 4 after all; for example, we
have mentioned a trick for forcing the algorithm to produce a given number of lines.
In the presence of varying line lengths, therefore, the algorithm would need to have
two separate list entries for an active breakpoint after the word ‘seen’. The computer
cannot simply remember the one with fewest total demerits, because the optimality
principle of dynamic programming would not be valid in such a case.

Figure 15 is an example of line breaking when the individual lengths are all different.
In such cases, the need to attach line numbers to breakpoints might mean that the
number of active breakpoints substantially exceeds the maximum number of words per
line, if the feasibility tolerance is set high; so it is desirable to set the tolerance low.
On the other hand, if the tolerance is set too low, there may be no way to break the
paragraph into lines having a desired shape. Fortunately, there is usually a happy
medium in which the algorithm has enough flexibility to find a good solution without
needing too much time and space. The data in Figure 16 shows, for example, that the

BREAKING PARAGRAPHS INTO LINES 1153

Figure 16. Details of the feasible
breakpoints in the first example
of Figure 15, showing how the
optimum solution was found.

'The area of d .306

circle is a mean propor-' .a61

tional bqtween any two regula? .a

and similar polygons of which one'1.016
cirpqcribes it and the other is is&' i . a w

perhetric with it. In ad&tion, the areal
of the' circle is less than that of any cir;
c w c r i b e d polygon and greater than that! .OTa

of and is&ell$netric polygon. And fuaher,' .693

of these' ci$umpibed polygons, the one' l.6ai

that' had the' greater n u a e r of sides had sTa6

a' smallei areal than the one that had1.4a6
al lesser nurqber;' but, on the othe+l.IK6

hand,' the' isberhetric polygon' 1.161

that has the' greater num-' .osO

be? of sides id the' 4 0

larger. .OOO

algorithm did not have to do very much work to find an optimal solution for Galileo's
remarks on circles, when the adjustment ratio on each feasible line was required to be
2 or less; yet there was sufficient flexibility to make feasible solutions possible.

A good line-breaking method is especially important for technical typesetting, since
it is undesirable to break up mathematical formulas that appear in the text. Some of
the most difficult copy of this kind appears in Muthematical Reviews or in the answer
pages of The A r t of Computer Programming, since the material in those publications
is often densely packed with formulas. Figure 17 shows a typical example from the
answer pages of Seminumerical Algorithmsg, together with indications of the feasible
breaks when the adjustment ratios are constrained to be at most 1 . Although some
feasible breakpoints occur in the middle of formulas, they are associated with penalties
that make them comparatively undesirable, so the algorithm was able to keep all of
the mathematics of this paragraph intact.

' 15. (This procedure maintains four integers (A, B, C, D) with the invariant meanind .1as

that "our remaining job is to output the continued fraction for (Ay + B)/(Cy + D); .as9

where y is the input yet to come.") Initially set j t k c 0, (A, B, C , D) t (a, b, c, d),J .oas

then input x j and set (A, B, C, D) t (h j + B,A, Cxj + D, C) , j 4- j + 1, ond O+ -160

mord times until C + D has the same sign as C. (When j 2 1 and the input' had -606

not' terminated, we know that 1 < y < 00; and when C + D has the samd sign' .DDa

as d wd know therefore that (Ay + B)/(Cy + D) lies between (A + B)/(C +'Dl and
A/C.Y Nod comes' the general step: JI no integer lies strictly between (A+'B)/(C+'DY - . u 6

k +I k +' 1;' otherwise' input X j and set (A, B, C,D) t (A x j + B,A, Cxj +' D, C): .T6P

j +I j +' 1.' The' general' step' is' repeated ad infinitum. However, if at any time thd -461

find z] id input: thd algorithm' immediately switches gears: It outputs the continued .air

and A/C: Output! xk t [A/C] , and set (A, B, C, D) t (C, D,A - xkc, B -'XkD): .a46

fraction' fox' (k j +'B)/(CZj +ID)! using Euclid's algorithm, and terminates. .000

Figure 17. An example of the feasible breakpoints found by the algorithm in a paragraph
containing numerous mathematical formulas.

1154 DONALD E. KNUTH AND MICHAEL F. PLASS

In olden times when wishjng still helped one, there lived a .,no

king whose daughters were all beaqtiful; and the younsst was so -el16
beaqtiful that the sun ibelf, which has seen so much, was aston- 4 1 5

ished whenper it shone in her face. Close by the king’s castle lay -.a16

a great dark fopst, and uqder an old lim%tree in the for-st was
a well, and when the day was very warm, the king’s child went . l ~ ~

out into the forEst and sat down by the side of the cool fouqtain; -.538

and when she was bored she took a golden ball, and threw it up -.134

on high and caught it; and this ball was her favorite plaything.
In olden times when wishjng still helped one, there lived a .TnO

king whose daughters were all beaytgul; and the youngest was .a46

so beaqtiful that the sun iQelf, which has seen so much, was .661

astongshed wheqver it shone in her face. Close by the king’s
castle lay a great dark for-st, and uqder an old lim%tree in the . o m

forfist was a well, and when the day was very warm, the king’s a 1 1 3

child went out into the forfist and sat down by the side of the a346

cool fouqtain; and when she was bored she took a golden ball, -111

and threw it up on high and caught it; and this ball was her -103

In olden times when wiswg still helped one, there lived l..OK

a king whose daughters were all bea&.ful; and the young- l . 4 ~ l

est was so beaqtaful that the sun iQelf, which has seen so 1.431

much, was astoqished whewver it shone in her face.
by the king’s castle lay a great dark forpt, and uqder an 1.461

old lim%tree in the fopst was a well, and when the day 1.8nI

was very warm, the king’s child went out into the for-st 1.886

and sat down by the side of the cool fouqtain; and when 1.551

she was bored she took a golden ball, and threw it up on 1 . 3 E O

high and caught it; and this ball was her favorite play- l.lTs

In olden times when wishjng still helped one, there 3.313
lived a king whose daugh,,ters were all bea&t@ul; and 3.610

the youngpst was so beaqtiful that the sun ibelf, which a.mn

has seen so much, was astonjshed whenper it shone 3.636

in her face. Close by the king’s castle lay a great 3.163
dark forEst, and uqder an old lim%tree in the for- 3.050

est was a well, and when the day was very warm, 3.616
the king’s child went out into the fopst and sat down
by the side of the cool fouqtain; and when she was 3.150

bored she took a golden ball, and threw it up on S.lao

high and caught it; and this ball was her favoqite play- 1.,76

favorite play$hing. - 6 6 1

Close

thing. .861

thing. .B6¶

Figure 18. Paragraphs obtained when the ‘looseness’ parameter has been set to -1, 0,
f l , and + 2 . As in Figure 14, the spaces have been allowed to stretch up to two ems before
being considered infeasible. Loose settings like this are sometimes necessary to balance a
page, but of course the effects are not beautiful when one goes to extremes.

BREAKING PARAGRAPHS INTO LINES 1155

MORE BELLS AND WHISTLES

The optimization problem we have formulated is to find breakpoints that minimize the
total number of demerits, where the demerits of a particular line depend on its badness
(i.e., on how much its glue must stretch or shrink) and on a possible penalty associated
with its final breakpoint; additional demerits are also added when two consecutive lines
end with hyphens (i.e., end at penalty items with f = 1). Two years of experience
with such a model of the problem gave excellent results, except that a few paragraphs
showed up where further improvement was possible.

The first two lines of Figures 4(a) and 4(b) illustrate a potential source of visual
disturbance that is not accounted for in the model we have been discussing: These
paragraphs begin with a tight line (having r = --741) immediately followed by a
loose line (having r = +-877). Although the two lines are not offensive in themselves
the contrast between tight and loose makes them appear worse. Therefore TEX’S new
algorithm for line breaking recognizes four kinds of lines:

Class 0 (tight lines), where - 1 < r < - -5;
Class 1 (normal lines), where - . 5 < r < + . 5 ;
Class 2 (loose lines), where + .5 < r < + 1;
Class 3 (very loose lines), where r 2 + -1.

Additional demerits are added when adjacent lines are not of the same or adjacent
classes, i.e., when a Class 0 line is preceded or followed by Class 2 or Class 3 , or when
Class 1 is preceded or followed by Class 3.

This seemingly simple extension actually forces the algorithm to work harder, be-
cause a feasible breakpoint may now have to be entered into the active list up to four
times in order to preserve the dynamic-programming principle of optimality. For ex-
ample, if it is feasible to end at some point with both a Class 0 line and a Class 2 line,
we must remember both possibilities even though the Class 0 choice has more demerits,
because it might be desirable to follow this breakpoint with a tight line. On the other
hand, we need not remember the Class 0 possibility if its total demerits exceed those of
the Class 2 break plus the demerits for contrasting lines, since the Class 0 breakpoint
will never be optimum in such a case.

More experience is needed to determine whether or not the additional computation
required by this extension is worthwhile. It is comforting for the user to know that the
line-breaking algorithm takes such refinements into account, but there is no point in
doing the extra work if the output is hardly ever improved.

Another extension to the algorithm is needed to raise it to the highest standards of
quality for hand composition: Sometimes it is desirable to set a paragraph so that it
comes out one line longer or shorter than its optimum length, because this will avoid
an isolated ‘widow line’ a t the top or bottom of a page, or because it will make the
total number of lines even so that the material can be divided into two equal columns.
Although the paragraph itself will not be in its optimum form, the entire page will look
better, and the paragraph will be set as well as possible subject to the given constraints.
For example, one of the paragraphs in the story of Figure 6 has been set a line shorter
than its optimum length, so that all six columns come out equal.

The line-breaking algorithm we shall describe therefore has a ‘looseness’ parameter,
illustrated in Figure 18. The ‘looseness’ is an integer q such that the total number of
lines produced for the paragraph is as close as possible to q plus the optimum number,

1156 DONALD E. KNUTH AND MICHAEL F. PLASS

without violating the conditions of feasibility. Figure 1 8 shows what happens to the
example paragraph of Figure 1 4 when q = - 1 , 0, + 1, and + 2, respectively. Values
of q < -1 would be the same as q = - 1 since this paragraph cannot be squeezed any
further, and values of q > 5 would be the same as q = 5 since the paragraph can’t
be stretched to more than 15 lines without having at least one line whose adjustment
ratio exceeds 10. The user can get the optimum solution having fewest possible lines
by setting q to an extremely negative value like - 100 . When q # 0, the feasible
breakpoints corresponding to different line numbers must all be remembered, even
when every line has the same length.

When the lines of a paragraph are fairly loose, we don’t want the last line to be
noticeably different, so it is undesirable to use a ‘finishing glue’ with almost infinite
stretchability as in our earlier remarks. The penalty for adjacent lines of contrasting
classes seems to work best in connection with looseness if the finishing glue at the
paragraph end is set to have a normal space equal to about half the total line width,
stretching to nearly the full width and shrinking to zero.

T H E ALGORITHM ITSELF

Now let us get down to brass tacks and discuss the details of an optimum line-
breaking algorithm. We are given a paragraph xi . . . x, described by items x i =
(t i ,wi ,y i , z i ,p i ,x) as explained earlier, where x1 is a box item and x, is a penalty
item specifying a forced break (p, = --a). We are also given a potentially infinite
sequence of positive line lengths I,, I,, There is a parameter c(that gets added
to the demerits whenever there are two consecutive breakpoints with = 1, and a
parameter y that gets added to the demerits whenever two consecutive lines belong to
incompatible fitness classes. There is a threshold parameter p that is an upper bound
on the adjustment ratios. And there is a looseness parameter q.

A feasible sequence of breakpoints (b , , . . ., bk) is a legal choice of breakpoints such
that each of the k resulting lines has an adjustment ratio rj d p. If 4 = 0, the job ofthe
algorithm is to find a feasible sequence of breakpoints having the fewest total demerits.
If q # 0, the job of the algorithm is somewhat more difficult to describe precisely; it
can be formulated as follows: Let k be the number of lines that the algorithm would
produce when q = 0. Then the algorithm finds a feasible sequence of k + q breakpoints
having fewest total demerits. However, if this is impossible, the value of q is decreased
by 1 (if q > 0) or increased by 1 (if q > 0) until a feasible solution is found. Sometimes
no feasible solution is possible even with q = 0; we will discuss this situation later after
seeing how the algorithm behaves in the normal case.

We have seen that it is occasionally useful to permit boxes, glue, and penalties to
have negative widths and even negative stretchability; but a completely unrestricted
use of negative values leads to unpleasant complications. For reasons of efficiency, it is
desirable to place two limitations on the paragraphs that will be treated:

0 Restriction 1. Let i b f b be the length of the minimum-length line from the begin-
ning of the paragraph to breakpoint b, namely the sum of all wi - zi taken over all
box and glue items xi for 1 d i<b , plus wb if xb is a penalty item. The paragraph
must have M a d Mb whenever a and b are legal breakpoints with a < b.

0 Restriction 2. Let a and b be legal breakpoints with a < 6 , and assume that no xi
in the range a< i < b is a box item or a forced break (penalty p i = - a). Then
either b = m, or xb+l is a box item or a penalty with p b + l < co.

BREAKING PARAGRAPHS INTO LINES 1157

Both of these restrictions are quite reasonable, as they are met by all known practical
applications. Restriction 2 seems peculiar at first glance, but we will see in a moment
why it is helpful.

Our algorithm has the following general outline, viewed from the top down:

(create an active node representing the beginning of the paragraph);
for b : = 1 to m do (if b is a legal breakpoint) then

begin (initialize the feasible breaks at b to the empty set);
(for each active node a) do

begin (compute the adjustment ratio Y from a to b) ;
if Y < -1 or (b is a forced break) then (deactivate node a);
if - 1 < Y < p then (record a feasible break from a to b) ;
end;

(append the best such breaks as active nodes);
(if there is a feasible break at b) then

end;
(choose the active node with fewest total demerits);
if q # 0 then (choose the appropriate active node);
(use the chosen node to determine the optimum breakpoint sequence)

The meaning of the ad hoc Algol-like language used here should be self-evident. An
‘active node’ in this description refers to a record that includes information about a
breakpoint together with its fitness classification and the line number on which it ends.

We want to have a data structure that makes this algorithm efficient, and it is not
hard to design a reasonably good one, but there are two aspects in which some subtlety
pays off: The operation of computing the adjustment ratio, from a given active node a
to a given legal breakpoint b, should be made as simple as possible; and there should
be an easy way to determine which of the feasible breaks at b ought to be saved as
active nodes.

In the first place, the adjustment ratio depends on the total width, total stretch-
ability, and total shrinkability computed from the first box after one breakpoint to
the following breakpoint, and it would take too much time to compute these sums
over and over. We can avoid this by computing the sums from the beginning of the
paragraph to the current place, and subtracting two such sums to obtain the total of
what lies between them. Let (& u) b , (C Y) b , and (b) b denote the respective sums of all
the wi, yi, and zi in the box and glue items x i for 1 < i < b. Then if a and b are legal
breakpoints with a < b , the width L a b of a line from a to b and its stretchability Y a b

and shrinkability z a b can be computed as follows:

L a b = (c w) b - (Zw)after(a) + (wb if t b = ‘penalty’);
Yab = @Y)b - (zY)after(a);

zab = (z:x)b - (Cz)after(a)*

Here ‘after()’ is the smallest index i > a such that either i > m or x i is a box item
or xi is a penalty item that forces a break (pi = -m). These formulas hold even in
the degenerate case that after(a) > b, because of Restriction 2; in fact, Restriction 2
essentially stipulates that the relation ‘after(a) > b’ implies that (h), = (&u)after(a),
(z Y) b = (zY)after(o), and (x z) b = (Ez)after(a)*

1158 DONALD E. KNUTH AND MICHAEL F. PLASS

From these considerations, we may conclude that each node a in the data structure
should contain the following fields:
position(a) = index of breakpoint represented by this node (0 = start of paragraph);
line(a) = number of the line ending at this breakpoint;
fitness(a) = fitness class of the line ending at this breakpoint;
totalwidth(a) = (Cw)after(a), used to calculate adjustment ratios;
totalstretch(a) = (Cy)after(a,, used to calculate adjustment ratios;
totalshrink(a) = (Cz)af,er(a), used to calculate adjustment ratios;
totaldemerits(a) = minimum total demerits up to this breakpoint;
previous(a) = pointer to the best node for the preceding breakpoint;
link(a) = pointer to the next node in the list.
Nodes become active when they are first created, and they become passive when they
are deactivated. The algorithm maintains global variables A and P, which point
respectively to the first node in the active list and the first node in the passive list.
The first step can therefore be fleshed out as follows:

(create an active node representing the beginning of the paragraph) =
begin A : = new node (position = 0, line = 0, fitness = 1 ,

totalwidth = 0, totalstretch = 0, totalshrink = 0,
totaldemerits = 0, previous = A, link = A);

P : = A;
end.

We also introduce global variables CW, C Y , and ZZ to represent (Zw),, (CY)b,
and (Cz), in the main loop of the algorithm, so that the operation ‘for b : = 1 to m do
(if b is a legal breakpoint) then (main loop)’ takes the following form:

CW:= C Y : = CZ:=O;
for b : = 1 tom do

if tb = ‘box’ then C W : = C W + wb
else if tb = ‘glue’ then

begin if t b p 1 = ‘box’ then (main loop);

end
CW:= ZW+w,; C Y : = CY+Yb; xz:= xz+zb;

else if p , # +cc then (main loop).
In the main loop itself, the operation ‘compute the adjustment ratio Y from a to b’ can
now be implemented simply as follows:

L : = C W - totalwidth(a);
if tb = ‘penalty’ then L : = L + w,;
j : = l ine(a)+l;
if L < lj then

begin Y : = C Y - totalstretch(a);
if Y > O then Y : = ($-L)/Y else I : = co;
end

begin 2 : = C Z - totalshrink(a);
if 2 > 0 then Y : = ($-L) /Z else Y : = 00;
end

else if L > l j then

else Y : = 0.

BREAKING PARAGRAPHS INTO LINES 1159

The other nonobvious problem we have to deal with is caused by the fact that
several nodes might correspond to a single breakpoint. We will never create two nodes
having the same values of (position, line, fitness), since the whole point of our dynamic
programming approach is that we need only remember the best possible way to get
to each feasible break position having a given line number and a given fitness class.
But it is not immediately clear how to keep track of the best ways that lead to a
given position, when that position can occur with different line numbers; we could,
for example, maintain a hash table with (line, fitness) as the key, but that would
be unnecessarily complicated. The solution is to keep the active list sorted by line
numbers: After looking at all the active nodes for l inej , we can insert new active
nodes for line j + 1 into the list just before any active nodes for lines >j+ 1 that
we are about to look at next.

An additional complication is that we don’t want to create active nodes for different
line numbers when the line lengths are all identical, unless q # 0, since this would
unnecessarily slow the algorithm down; the complexities of the general case should
not encumber the simple situations that arise most often. Therefore we assume that
an indexj, is known such that all breaks at line numbers >jo can be considered
equivalent. This index j , is determined as follows: If q # 0, then j , = 00; otherwise
j , is as small as possible such that Z,. = 4 + , for all j > j,. For example, if q = 0 and
I, = I, = I, # Z4 = I, = - - . , we let j , = 3 , since it is unnecessary to distinguish a
breakpoint that ends line 3 from a breakpoint that ends line 4 at the same position, as
far as any subsequent lines are concerned.

For each position b and line numberj, it is convenient to remember the best feasible
breakpoints having fitness classifications 0, 1, 2, 3 by maintaining four values Do, D, ,
D,, D,, where D, is the smallest known total of demerits that leads to a breakpoint at
position b and linej and class c. Another variable D = min(D,, D,, D,, 0,) turns out
to be convenient as well, and we let A, point to the active node a that leads to the best
value 0,. Thus the main loop takes the following slightly altered form:

begin a : = A; preva := A;

loop: nexta : = link(a);
(compute the adjustment ratio Y from a to b) ;
if r < -1 or pb = -00 then (deactivate node a) else preva: = a;
if -1Grdpthen

begin (compute demerits d and fitness class c);
if d<D, then

begin D,:= d; A,:= a; if d < D then D:= d;
end;

loop: D , : = D , : = D , : = D , : = D : = +0O;

end;
a : = nexta; if a = A then exit loop;
if line(a)aj and j< j , then exit loop;
repeat;

if D < 00 then (insert new active nodes for breaks from A, to b);
if a = A then exit loop;
repeat;

if A = A then (do something drastic since there is no feasible solution);
end.

1160 DONALD E. KNUTH AND MICHAEL F. PLASS

For a given position b, the inner loop of this code considers all nodes a having
equivalent line numbers, while the outer loop runs through all of the line numbers that
are not equivalent.

I t is not difficult to derive a precise encoding of the operations that have been
abbreviated in these loops:

(compute demerits d and fitness class c) =
begin if pb 2 0 then d : = (1 + 100 I r l 3 +pJ2
else if pb # -00 then d : = (1 + 1001 r 1 3) 2 - p i
else d : = (1 + 100 1 r I3l2;

if r < -.5 then c : = 0
else if r < .5 then c : = 1
else if r < 1 then c : = 2 else c : = 3;
if)c-fitness(a)) > 1 then d : = d+y;
d : = d + totaldemerits(a);
end;

begin (compute tw = (Zw)after(b), tY = (xY)after(b), and tz = (Cz)aftcr(bt);
for c : = 0 to 3 do if D, < D f y then

begin s : = new node(position = 6, line = line(A,) + 1, fitness = c,

: = d+ a . f b .fposition(a);

(insert new active nodes for breaks from A, to b) =

totalwidth = tw, totalstretch = ty, totalshrink = tz,
totaldemerits = D,, previous = A,, link = a);

if preva = A then A = d else link(preva) : = s;
preva : = s;
end;

(compute tw = (xw)after(b), tY == (xY)after(b), and = (xz)after(b)) =
begin tw:= C W , t y : = Z=Y, t z : = CZ, z:= b;

loop: if i > m then exit loop;
if 4 = ‘box’ then exit loop;
if ti = ‘glue’ then

begin tw:= tw+wi; t y : = ty+yi; t z : = tz+zi;
end

else if pi = - 00 and i> b then exit loop;
i: = i+ 1;
repeat;

end;
(deactivate node a> =

begin if preva = A then A : = nexta else link(preva) : = nexta;
link(a) : = P; P : = a;
end;

After the main loop has done its job, the active list will contain only nodes with

(choose the active node with fewest total demerits) =

position = m, since x, is a forced break. Thus, we can write

begin if a : = b : = A; d : = totaldemerits(a);
loop: a : = link(a);
if a = A then exit loop;

BREAKING PARAGRAPHS INTO LINES 1161

if totaldemerits(a) < d then
begin d : = totaldemerits(a); b : = a;
end;

repeat;
k : = line(b);
end.

Now b is the chosen node and k is its line number. The subsequent processing for
q # 0 is equally elementary:

(choose the appropriate active"node) =
begin a : = A; s : = 0;

loop: 6 : = line(a) - k;
if q < 6 < s or s < 6 d q then

begin s : = b; d : = totaldemerits(a); b : = a;
end

begin d : = totaldemerits(a); b : = a;
end;

a : = link(a); if a = A then exit loop;
repeat;

k : = line(b);
end.

else if 6 = s and totaldemerits(a) < d then

Now the desired sequence of k breakpoints is accessible from node b:
(use the chosen node to determine the optimum breakpoint sequence) =

for j : = k down to 1 do
begin bj : = position(b); b : = previous(b);
end.

(Another way to complete the processing, getting the lines in forward order from 1 to k
instead of from k to 1, appears in the appendix below.) If there is no garbage collection,
the algorithm concludes by deallocating all nodes on lists A and P .

Note that Restriction 1 makes it legitimate to deactivate a node when we discover
that r < - 1, since r < - 1 is equivalent to Zl < Lab-Zab, therefore subsequent
breakpoints b'>b will have Labr-Zabr 2 Lab-&, . Thus it is not difficult to
verify that the algorithm does indeed find an optimal solution: Given any sequence of
feasible breakpoints b , < - . <b,, we can prove by induction on j that the algorithm
constructs a node for a feasible break at j , with appropriate line numbers and fitness
classifications, having no more demerits than the given sequence does.

There is only one loose end remaining in the algorithm, namely the operation 'do
something drastic since there is no feasible solution'. As mentioned above, the TEX
system assumes that the user has chosen the tolerance threshold p in such a way that
human intervention is desirable when this tolerance cannot be met. Another alternative
would be to have two thresholds and to try the algorithm first with threshold po,
which is lower than p , so the algorithm will generate comparatively few active nodes;
if there is no way to succeed at tolerance po, the algorithm could simply return all
nodes to free storage and try again with the actual threshold p. This dual-threshold
method will not always find the strictly optimum feasible solution, since it is possible
in unusual circumstances for the optimum solution to include a line whose adjustment

1162 DONALD E. KNUTH AND MICHAEL F. PLASS

ratio exceeds po while there is a non-optimum feasible solution meeting the tolerance
pa; for practical purposes, however, this difference is negligible.

TEX uses a different sort of dual-threshold method. Since the task of word division
is nontrivial, TEX first tries to break a paragraph into lines without any discretionary
hyphens except those already present in the given text, using a tolerance threshold p l .
If the algorithm fails to find a feasible solution, or if there is a feasible solution with
q # 0 but the desired looseness could not be satisfied (6 # q), all nodes are returned
to free storage and TEX starts again using another tolerance p2. During this second
pass, all words of five letters or more are submitted to TEX’S hyphenation algorithm
before they are treated by the line-breaking algorithm. Thus, the user sets p1 to the
limit of tolerance for paragraphs that can be completely broken without hyphenation,
and p2 is set to the tolerance limit when hyphenation must be tried; possibly p 1 will be
slightly larger than p z , but it might also be smaller, if hyphenation is not frowned on
too much. (TEX users specify two integers, ‘jjpar’ = p: and ‘jpar’ = pz .) In practice
p I and p2 are usually equal to each other, or else p1 is near 1 and p z > 2; alternatively,
one can take pz = 0 to effectively disallow hyphenation.

When both passes fail, TEX continues by reactivating the node that was most
recently deactivated and treats it as if it were a feasible break leading to 6. This situation
is actually detected in the routine ‘deactivate node a’, just after the last active node
has become passive:

if A = A and secondpass and D = co and r < -1 then Y:= -1

The net result is to produce an ‘overfull box’ that sticks out into the right margin,
whenever no feasible sequence of line breaks is possible. As discussed above, some kind
of error indication is necessary, since the user is assumed to have set p to a value such
that further stretching is intolerable and requires manual intervention. An overfuIl box
is easier to provide than an underfull one, by the nature of the algorithm. The setting
of the overfull box will be as tight as possible, so that the user can easily see how to
devise appropriate corrective action such as a forced line break or hyphenation.

COMPUTATIONAL EXPERIENCE

The algorithm described in the previous section is rather complex, since it is intended
to apply to a wide variety of situations that arise in typesetting. A considerably
simpler procedure is possible for the special cases needed for word processors and
newspapers; the appendix to this paper gives details about such a stripped-down
version. Contrariwise, the algorithm in TEX is even more complex than the one we
have described, because TEX must deal with leaders, with footnotes or cross references
or page-break marks attached to lines, and with spacing both inside and immediately
outside of math formulas; the spacing that surrounds a formula is slightly different from
glue because it disappears when followed by a line break, but it does not represent a
legal breakpoint. (A complete description of TEX’s algorithm will appear elsewhere.’ 3,

Experience has shown that the general algorithm is quite efficient in practice, in spite
of all the things it must cope with.

So many parameters are present, it is impossible for anyone actually to experiment
with a large fraction of the possibilities. A user can vary the interword spacing and the
penalties for inserted hyphens, explicit hyphens, adjacent flagged lines, and adjacent

BREAKING PARAGRAPHS INTO LINES 1163

lines with incompatible fitness classifications; the tolerance threshold p can also be
twiddled, not to mention the lengths of lines and the looseness parameter q. Thus
one could perform computational experiments for years and not have a completely
definitive idea about the behavior of this algorithm. Even with fixed parameters there
is a significant variation with respect to the kind of material being typeset; for example,
highly mathematical copy presents special problems. An interesting comparative study
of line breaking was made by Duncan et al.’, who considered sample texts from
Gibbon’s Decline and Fall versus excerpts from a story entitled Salar the Salmon; as
expected, Gibbon’s vocabulary forced substantially more hyphenated lines.

On the other hand, we have seen that the optimizing algorithm leads to better
line breaks even in children’s stories where the words are short and simple, as in
Grimm’s fairy tales. It would be nice to have a quantitative feeling for how much
extra computation is necessary to get this improvement in quality. Roughly speaking,
the computation time is proportional to the number of words of the paragraph, times
the average number of words per line, since the main loop of the computation runs
through the currently active nodes, and since the average number of words per line is
a reasonable estimate of the number of active nodes in all but the first few lines of a
paragraph (see Figures 12 and 14). On the other hand, there are comparatively few
active nodes on the first lines of a paragraph, so the performance is actually faster than
this rough estimate would indicate. Furthermore, the special-purpose algorithm in the
appendix runs in nearly linear time, independent of the line length, since it does not
need to run through all of the active nodes.

Detailed statistics were kept when TEX’S first large production, Seminumerical Algo-
rithms’, was typeset using the procedure above. This 700-page book has a total of
5526 ‘paragraphs’ in its text and answer pages, if we regard displayed formulas as
separators between independent paragraphs. The 5526 paragraphs were broken into
a total of 21,057 lines, of which 550 (about 2.6 per cent) ended with hyphens. The
lines were usually 29 picas wide, which means 626.4 machine units in 10-point type and
about 677.19 machine units in 9-point type, roughly twelve or thirteen words per line.
The threshold values p1 and p2 were normally both set to 7 2 % 1 *26, so the spaces
between words ranged from a minimum of 4 units to a maximum of 6+ 3 v 2 ~ 9 . 7 8
units. The penalty for breaking after a hyphen was 50; the consecutive-hyphens and
adjacent-incompatibility demerits were c(= y = 3000. The second (hyphenation) pass
was needed on only 279 of the paragraphs, i.e., about 5% of the time; a feasible solution
without hyphenation was found in the remaining 5247 cases. The second pass would
only try to hyphenate uncapitalized words of five or more letters, containing no accents,
ligatures, or hyphens, and it turned out that exactly 6700 words were submitted to the
hyphenation procedure. Thus the number of attempted hyphenations per paragraph
was approximately 1 ‘2, only slightly more than needed by conventional nonoptimizing
algorithms, and this was not a significant factor in the running time.

The main contribution to the running time came, of course, from the main loop of the
algorithm, which was executed 274,102 times (about 50 times per paragraph, including
both passes lumped together when the second pass was needed). The total number of
break nodes created was 64,003 (about 12 per paragraph), including multiplicities for
the comparatively rare cases that different fitness classifications or line numbers needed
to be distinguished for the same breakpoint. Thus, about 23 yo of the legal breakpoints
turned out to be feasible ones, given these comparatively low values of p1 and p2. The
inner loop of the computation was performed 880,677 times; this is the total number

1164

-1.00 5 r <-0.95
-0.95 5 r <-0.85
-0.85 5 r < -0.75
-0.75 5 r <-0.65
-0.65 5 r <-0.55
-0.55 5 r <-0.45
-0.45 5 r <-0.35
-0.35 5 r < -0.25
-0.25 5 r <-0.15
-0.15 < r <-0.05
-0.05 < r <+0.05
+0.05 5 r <+0.15
+0.15 5 r <+0.25
+0.25 5 r <+0.35
+0.35 5 r <+0.45
+0.45 5 r <+0.55
+0.55 5 r <+0.65
+0.65 5 r <+0.75
t0.75 5 r <+0.85
+0.85 5 r < +0.95
+0.95 5 r <+l.05
+l.05 5 r <+1.15
+1.15 5 r <+l.26

DONALD E. KNUTH AND MICHAEL F. PLASS

1
1

1

I
-1 I

I F I

Figure 19. The adjustment ratios for interword spaces
in a 700-page book.

of active nodes examined when each legal breakpoint was processed, summed over all
legal breakpoints. Note that this amounts to about 160 active node examinations per
paragraph, and 3.2 per breakpoint, so the inner loop definitely dominates the running
time. If we assume that words are about five letters long, so that a legal break occurs
for every six characters of input text including the spaces between words, the algorithm
costs about half of an inner-loop step per character of input, plus the time to pass over
that character in the outermost loop.

This source data was also used to establish the importance of the optional dominance
test ‘if D, < D+y’ preceding the creation of a new node; without that test, the
algorithm was found to need about 25% more executions of the inner loop, because
so many unnecessary nodes were created.

And how about the output? Figure 19 shows the actual distribution of adjustment
ratios r in the 15,531 typeset lines of Seminumerical Algorithms, not counting the
5526 lines at the ends of paragraphs, for which r ~ 0 . There was also one line with
r ~ 1 . 8 and one with ~ ~ 2 . 2 (i.e., a disgraceful spacing of 12.6 units); perhaps some
reader will be able to spot one or both of these anomalies some day. The average value
of r over all 21,057 lines was 0.08, and the standard deviation was only 0-403; about
67% of the lines had word spaces varying between 5 and 7 units. Furthermore the
author believes that virtually none of the 15,531 line breaks are ‘psychologically bad’
in the sense mentioned above.

Anyone who has experience with typical English text knows that these statistics are
not only excellent, they are in fact too good to be true; no line-breaking algorithm can
achieve such stellar behavior without occasional assists from the author, who notices
that a slight change in wording will permit nicer breaks. Indeed, this is another source
of improved quality when an author is given composition tools like TEX to work with,
because a professional compositor does not dare mess around with the given wording
when setting a paragraph, while an author is happy to make changes that look better,
especially when such changes are negligible by comparison with changes that are found
to be necessary for other reasons when a draft is being proofread. An author knows

BREAKING PARAGRAPHS INTO LINES 1165

that there are many ways to say what he or she wants to say, so it is no trick at all to
make an occasional change of wording.

Theodore L. De Vinne, one of America’s foremost typographers at the turn of the
century, wrote14 that ‘when the author objects to [a hyphenation] he should be asked
to add or cancel or substitute a word or words that will prevent the breakage.. .
Authors who insist on even spacing always, with sightly divisions always, do not
clearly understand the rigidity of types.’ Another interesting comment was made by
G. B. Shawl’: ‘In his own works, whenever [William Morris] found a line that justified
awkwardly, he altered the wording solely for the sake of making it look well in print.
When a proof has been sent to me with two or three lines so widely spaced as to make
a grey band across the page, I have often rewritten the passage so as to fill up the lines
better; but I am sorry to say that my object has generally been so little understood
that the compositor has spoilt all the rest of the paragraph instead of mending his
former bad work.’

The bias caused by Knuth’s tuning his manuscript to a particular line width makes
the statistics in Figure 19 inapplicable to the printer’s situation where a given text
must be typeset as it is. So another experiment was conducted in which the material
of Section 3 .5 of Seminumerical Algorithms was set with lines 25 picas wide instead
of 29 picas. Section 3 .5 , which deals with the question ‘What is a random sequence?’,
was chosen because this section most closely resembles typical mathematics papers con-
taining theorems, proofs, lemmas, etc. In this experiment the optimum-fit algorithm
had to work harder than it did when the material was set to 29 picas, primarily because
the second pass was needed about thrice as often (49 times out of 273 paragraphs,
instead of 16 times); furthermore the second pass was much more tolerant of wide
spaces (p2 = 10 instead of 72), in, order to guarantee that every paragraph could be
typeset without manual intervention. There were about 6 examinations of active nodes
per legal breakpoint encountered, instead of about 3 , so the net effect of this change
in parameters was to nearly double the running time for line breaking. The reason for
such a discrepancy was primarily the combination of difficult mathematical copy and
a narrower column measure, rather than the ‘author tuning’, because when the same
text was set 35 picas wide the second pass was needed only 8 times.

It is interesting to observe the quality of the spacing obtained in this 25-pica experi-
ment, since it indicates how well the optimum-fit method can do without any human
intervention. Figure 20 shows what was obtained, together with the corresponding
statistics for the best-fit method when it was applied to the same data. About 800 line
breaks were involved in each case, not counting the final lines of paragraphs. The main
difference was that optimum-fit tended to put more lines into the range *5 d Y d 1,
while best-fit produced considerably more lines that were extremely spaced out. The
standard deviation of spacing was 0.53 (optimum-fit) versus 0.65 (best-fit); 24 of the
lines typeset by best-fit had spaces exceeding 12 units, while only 7 such bad lines were
produced by the optimum-fit method. An examination of these seven problematical
cases showed that three of them were due to long unbreakable formulas embedded in
the text, three were due to the rule that TEX does not try to hyphenate capitalized
words, and the other one was due to TEX’S inability to hyphenate the word ‘reasonable’.
Cursory inspection of the output indicated that the main difference between best-fit
and optimum-fit, in the eyes of a casual reader, would be that the best-fit method not
only resorted to occasional wide spacing, it also tended to end substantially more lines
with hyphens: 119 by comparison with 80. An author who cares about spacing, and

1166

-1.00 5 r <-0.75
-0.75 5 r <-0.50
-0.50 5 r <-0.25
-0.25 5 r < 0.00
0.00 5 r <+0.25

t0.25 5 r <$-0.50
+0.50 5 r < i-0.75
t0.75 5 r <+l.OO
+l.OO 5 r <+1.25
+1.25 5 r <+1.50
+l.50 5 r <+1.75
f1.75 5 r <+2.00
t2.00 5 r <+w

DONALD E. KNUTH AND MICHAEL F. PLASS

-1.00 5 r <-0.75
-0.75 5 t < -0.50
-0.50 5 t <-0.25
-0.25 5 t < 0.00
0.00 5 r <+0.25

+0.25 5 t <+0.50
+0.50 5 r <+0.75
+0.75 5 r <+l.OO
+l.OO 5 r <+1.25
+1.25 5 r <+l.50
+l.50 5 r <+1.75
+1.75 5 r <+2.00
+2.00 5 r <+oo

a,
'Optimum fit'

!I
Figure 20. The distribution of interword spaces found by the best line-at-a-time method,
compared to thedistribution found by the best paragraph-at-a-timemethod, whendificult
mathematical copy i s typeset without human intervention.

who therefore will edit a manuscript until it can be typeset satisfactorily, would have
to do a significant amount of extra work in order to get the best-fit method to produce
decent results with such difficult copy, but the output of the optimum-fit method could
be made suitable with only a few author's alterations.

A HISTORICAL SUMMARY
We have now discussed most of the issues that arise in line breaking, and it is interesting
to compare the newfangled approaches to what printers have actually been doing
through the years. Medieval scribes, who prepared beautiful manuscripts by hand
before the days of printing, were generally careful to break lines so that the right-
hand margins would be nearly straight, and this practice was continued by the early
printers. Indeed, printers had to fill up each line of type with spaces anyway, so that
the individual letters wouldn't fall out of position while making impressions, and it
wasn't too much more difficult for a compositor to distribute the spaces between words
instead of putting them at the ends of lines.

One of the most difficult challenges faced by printers over the years has been the
typesetting of 'polyglot Bibles'-editions of the Bible in which the original languages
are set side by side with various translations-since special care is needed to keep
the versions of various languages synchronized with each other. Furthermore the fact
that several languages appear on each page means that the texts tend to be set with
narrower columns than usual; this, together with the fact that one dare not alter the
sacred words, makes the line-breaking problem especially difficult. We can get a good
idea of the early printers' approaches to line breaking by examining their polyglot
Bibles carefully.

The first polyglot Bible'6,'7,'8 was produced in Spain by the eminent Cardinal
J imhez de Cisneros, who reportedly spent 50,000 gold ducats to support the project.
It is generally called the Complutensian Polyglot, because it was prepared in Alcalh
de Henares, a city near Madrid whose old Roman name was Complutus. The printer,
Arnao Guillen de Brocar, devoted the years 1514-1517 to the production of this six-
volume set, and it is said that the Hebrew and Greek fonts he made for the occasion
are among the finest ever cut. His approach to justification was quite interesting and
unusual, as shown in Figure 21 : Instead of justifying the lines by increasing the word
spaces, he inserted visible leaders to obtain solid blocks of copy with straight margins.

BREAKING PARAGRAPHS INTO LINES 1167

Figure 21. The opening verses
of Genesis as typeset in the
Complutensian Polyglot Bible;
the Latin words are keyed to the
Hebrew, and leaders are used to
f i l l out lines that would otherwise
be ragged right and ragged left.
Greek and Chaldee (Aramaic)
versions of the text also appeared
on the same page.

These leaders appear at the right of the Latin lines and at the left of the Hebrew lines.
He changed this style somewhat after gaining more experience: Starting at about the
46th chapter of Genesis, the Hebrew text was justified by word spaces, although the
leaders continued to appear in the Latin column. It is clear that straight margins were
considered strongly desirable at the time.

Brocar’s method of line breaking seems to be essentially a first-fit approach to the
Hebrew text; the corresponding Latin translation could then be set up rather easily,
since there were two lines of Latin for each line of Hebrew, and this gave plenty of room
for the Latin. In some cases when the Greek text was abnormally long by comparison
with the corresponding Hebrew (e.g., Exodus 38), Brocar set the Hebrew quite loosely,
so it is evident that he gave considerable attention to line breaking.

At about the same time, a polyglot version of the book of Psalms was being prepared
as a labor of love by Agostino Giustiniani of Genoa.” This was the first polyglot book
actually to appear in print with each language in its own characters, although Origen’s
third-century Hexupla manuscript is generally considered to be the inspiration for all
of the later polyglot volumes. Giustiniani’s Psalter had eight columns: (1) The Hebrew
original; (2) A literal Latin rendition of (1); (3) The common Latin (Vulgate) version;
(4) The Greek (Septuagint) version; (5) The Arabic version; (6) The Chaldee version;
(7) A literal Latin translation of (6); (8) Notes. Since the Psalms are poems, all of the
columns except the last were set with ragged margins, and an interesting convention
was used to deal with the occasional line that was too wide to fit: A left parenthesis was
placed at the very end of the broken line, and the remainder of that line (preceded by
another left parenthesis) was placed flush with the margin of the preceding or following
line, wherever it would fit.

Only column (8) was justified, and it had a rather narrow measure of about 21 char-
acters per line. By studying this column we can conclude that Giustiniani did not take
great pains to make equal spacing by fiddling with the words. For example, Figure 22,

1168 DONALD E. KNUTH AND MICHAEL F. PLASS

Figure 22. Part of Giustiniani’s commentary on the Psalms. The
presence of a loose line surrounded by two very tight lines indicates
that the compositor did not go back to reset previous lines when a
problem arose.

which comes from the notes on Psalm 6, shows two very tight lines enclosing a very
loose one in the passage ‘scriptum est . . . quod qui’. If Giustiniani had been extremely
concerned about spacing he would have used the hyphenation ‘cog-nosces’; the other
potential solution, to move ‘ad’ up a line, would not have worked since there isn’t quite
room for ‘ad’ on the loose line. Notice that another aid to line breaking in Latin at
that time was to replace an m or n by a tilde on the previous vowel (e.g., ‘premifi’
for premium and ‘miido’ for mundo); an extension to the box/glue/penalty algebra
would be needed to include such options in TEX’S line-breaking algorithm! It is not
clear why Giustiniani didn’t set ‘acceperk’ on the third line, to save space, since he
had no room for the hyphen of ‘in-tellectum’; perhaps he didn’t have enough 6’s left
in his type case.

Figure 23 shows some justified text from the Complutensian polyglot, taken from
the Latin translation of an early Aramaic translation of the original Hebrew. The
compositor was somewhat miraculously able to maintain this uniformly tight spacing
throughout the entire volume, by making use of abbreviations and frequent hyphena-
tions. Note that, as in Figure 22, the hyphen was omitted from a broken word when
there was no room for it; e.g., ‘diuisit’ has been divided without a hyphen.

Figure 23. Early printing of Latin texts featured
uniformly tight spacing, obtained by frequent use
of abbreviations and word division. This sample
comes from the same page as Figure 21.

BREAKING PARAGRAPHS INTO LINES 1169

%t ftatiin persexenitit ad
, & conitirueruiit aducr-
cos prcclium in &ebb-

bat-oruin , & dixerutx ad

I % Figure 24. The Latin version of 1 Maccabees 2:32 from Plantin’s Royal
Polygot of Antwerp, showing how the second-last line of a paragraph
was spaced out in order to add a line. (The copy is distorted at the
right of this illustration, because the pages of this rare book cannot be
laid $at without harming its binding.)

COS.

The next great polyglot Bible was the Royal Polyglot of Antwerp,20 produced during
1568-1 572 by the outstanding printer Christophe Plantin. Numerous copies of the
Complutensian Polyglot had unfortunately been lost at sea, so King Phillip I1 commis-
sioned a new edition that would also take advantage of recent scholarship. Plantin
was a pious man who was active in pacifist religious circles and anxious to undertake
the job; but when he had completed the work he described it as an ‘indescribable toil,
labor, and expense.’ On June 9, 1572, Plantin sent a letter to one of his friends, saying
‘I am astonished at what I undertook, a task I would not do again even if I received
12,000 crowns as a gift.’ But at least his work was widely appreciated: Lucas of Bruges,
writing in 1577, said that ‘the art of the printer has never produced anything nobler,
nor anything more splendid.’

Most of Plantin’s polyglot Bible was justified with fairly wide columns having about
42 characters per line, so it did not present especially difficult problems of line breaking.
But we can get some idea of his methods by studying the texts of the Apocrypha, which
were set with a narrower measure of about 27 characters per line. He arranged things
so that each column on a page would have about the same number of lines, even though
the individual columns were in different languages. Figure 24 shows an example of a
passage excerpted from a page where the Latin text was comparatively sparse, so the
paragraphs on that page needed to be rather loose. It appears that the entire page
was set first, then adjustments were made after the Latin column was found to be
too short; in this case the word ‘eos’ was brought down to make a new line and the
previous line was spaced out. Plantin’s compositor did not take the trouble to move
‘sab-’ down to that line, although such a transposition would have avoided a hyphen
without making the spacing any worse. The optimum solution would have been to
avoid this hyphenation and to hyphenate the previous line after ‘ad-’, thus achieving
fairly uniform spacing throughout.

printed by Thomas Roycroft and others during the Cromwellian years 1653-1 657.
This massive 8-volume work included texts in Hebrew, Greek, Latin, Aramaic, Syriac,
Arabic, Ethiopic, Samaritan, and Persian, all with accompanying Latin translations,
and it has been acclaimed as ‘the typographical achievement of the seventeenth cen-
tury.’ As in Plantin’s work shown in Figure 24, a paragraph that has been loosened will
often eod with an unnecessarily tight hyphenated line followed by a loose line followed
by a one-word line; so it is clear that Roycroft’s compositors did not have time to do
complex adjustments of line breaks.

Hyphenations were clearly not frowned upon at the time, since about 40% of all
lines in the London Polyglot end with a hyphen, regardless of the column width. It
is not difficult to find pages on which hyphenated lines outnumber the others; and in
the Latin translation of the Aramaic version of Genesis 4: 15, even the two-letter word
‘e-o’ was hyphenated! Such practice was not uncommon: for example, the Hamburg
Polyglot Bible” of 1596 had more than 50% hyphens at the right margin. Both
Plantin’s polyglot and the notes of Giustiniani’s Psalter had hyphenation percentages
of about 40%, and the same was true of many medieval manuscripts. Thus it was

The most accurate and complete of all polyglot Bibles was the London

1170 DONALD E. KNUTH AND MICHAEL F. PLASS

considered better to have the margins straight and to keep the spacing tight, rather
than to avoid word splits.

One of the first things that strikes a modern eye when looking at these old Bibles
is the treatment of punctuation. Note, for example, that no space appears after the
commas in Figure 22, and a space appears before as well as after one of the commas
in Figure 24. One can find all four possibilities of ‘space before/no space before’
and ‘space after/no space after’ in each of the Bibles mentioned so far, with respect
to commas, periods, colons, semicolons, and question marks, and with no apparent
preference between the four choices except that it was comparatively rare to put a
space before a period. Giustiniani and Plantin occasionally would insert spaces before
periods, but Roycroft apparently never did. Commas began to be treated like periods
in this respect about 1700, but colons and semicolons were generally both preceded and
followed by spaces until the 19th century. Such extra spaces were helpful in justifying,
of course, and it was also helpful to have the option of leaving out all of the space next
to a punctuation mark. Roycroft would in fact eliminate the space between words
when necessary, if the following word was capitalized (e.g., ‘dixitDeus’); apparently a
printer’s main goal was to keep the text unambiguously decipherable, while ease of
readability was only of secondary importance.

Knowledge about how to carry out the work of a trade like printing was originally
passed from masters to apprentices and not explained to the general public, so we can
only guess at what the early printers did by looking at their finished products. A trend
to put trade secrets into print was developing during the 17th century, however,23
and a book about how to make books was finally written: Joseph Moxon’s Mechanick

published in 1683, was by forty years the earliest manual of printing in
any language. Although Moxon did not discuss rules for hyphenation and punctuation,
he gave interesting information about line breaking and justification.

‘If the Compositor is not firmly resolv’d to keep himself strictly to the Rules of
good Workmanship, he is now tempted to make Botches.. .’, namely bad line breaks,
according to Moxon. The normal ‘thick space’ between words, when beginning to make
up a line, was one-fourth of what Moxon called the body size (one em), and he also spoke
of ‘thin spaces’ that were one-seventh of the body size; thus, a printer who followed
this practice would deal mostly with spaces of 4.5 units and 2.57 units, although these
measurements were only approximate because of the primitive tools used at the time.
Moxon’s procedure for justifying a line whose natural width was too narrow was to
insert thin spaces between one or more words to ‘fill up the Measure pretty stiff,’ and if
necessary to go back through the line and do this again. ‘Strictly, good Workmanship
will not allow more [than the original space plus two thin spaces], unless the Measure
be so short, that by reason of few Words in a Line, necessity compells him to put more
Spaces between the the Words . . .These wide Whites are by Compositers (in way of
Scandal) call’d Pidgeon-holes. . . . And as Lines may be too much Spaced-out, so may
they be too close Set.’

Notice that Moxon’s justification procedure would normally leave uneven spacing
between words on the same line, since he inserts the thin spaces one by one. In fact,
such discrepancies were the norm in early printed books, which look something like
present-day attempts at justification on a typewriter or computer terminal with fixed-
width spacing. For example, the relative proportions in the spaces of the third line of
Plantin’s text in Figure 24 are approximately 8 : 12 : 5 : 9 : 4, and in the fifth line
of Giustiniani’s Figure 22 they are approximately 3 : 2 : 1. Moxon’s book itself (see

BREAKING PARAGRAPHS INTO LINES 1171

Figure 25. An excerpt from page 245 of
Joseph Moxon’s ‘Mechanick Exercises,’
vol. 2 , the $first book about how printing
is done. Moxon is describing the process
of making corrections to pages that have
already been typeset; the irregular spacing
found throughout his book is probably due
in part to the fact that such corrections
are necessary.

rf there tx a long rcordor more left out, he
caniiot exp& to Get that in into that Pme, whcre-
fore he ~nult now Over-ran; that is, he mufl put fo
much of the fore-part of the Lme into the Line
aboveit, or fo much of the hinder p r t of the L ~ H C
into the next Line under it, as will make room for
\E lrat is I,$ mi : Tltcrefitre Ire confiders liow Wide
he has Set, that io by Over-rranzq the fewcr Lrnes
back.ivarcls or foru ards, or both, (as he finrishis help)
lie may take out ii, ninny LTpures, or other CVlirtes
as wiil amount to rile T7wRnefi ofwhat he has Left
o#t : Thus if he have Set wide, he may perhaps Gel
a fmall Wwdor a S$f& into the forcgoing Lmegnd
prliaqs another fmall @“odor Syikhie in the follow-
mg Lme, which if his T-ea.c?~g wt is not much, may
Gst it in : But if he Left out much, he mufl O V C ~ ; . ~ U M
iwmy Lints, either backwards or forwards, or both,
till Iie CQIIIC t oa Bred : And if when he coines at
a sreilfi it lie not Gotten in ; he l>rrve.s out a Line.
In this aiie if hc cantlot Get zn a f.me, by ~ e t t ; ~ ~
dta tile Mbrd of rllat t3rt-d (as I juR now iheur’d you

Figure 25) shows extreme variations, frequently breaking the rules he had stated for
maximum and minimum spaces between words.

It would be nice to report that Moxon described a particular line-breaking algorithm,
like the first-fit or best-fit method, but in fact he never suggested any particular
procedure, nor did any of his successors until the computer age; this is not surprising,
since people were just expected to use their common sense instead of to obey some rigid
rules. Many of the breaks in Figure 25 can, however, be accounted for by assuming
an underlying first-fit algorithm. For example, the looseness on lines 1 , 4, and 8 is
probably due to the long words at the beginning of lines 2, 5, and 9, since these long
words would not fit on the previous line unless they were hyphenated. On the other
hand, the extremely tight spacing on line 13 can best be explained by assuming that
one or more words had to be inserted to correct an error after the page had been set.
Thus we cannot satisfactorily infer the compositor’s procedure from the final copy, we
really need to see the first trial proofs. All we can conclude for certain is that there
was very little attempt to go back and reconsider the already-set lines unless it was
absolutely necessary to do so; for example, this paragraph would have been better if
the first line had ended with ‘can-’ and the second with ‘wherefore’.

Moxon’s compositor was, however, supposed to look ahead: ‘When in Composing he
comes near a Break [i.e., the end of a paragraph], he for some Lines before he comes to
it considers whether that Break will end with some reasonable White; If he finds it will,
he is pleas’d, but if he finds he shall have but a single W o r d in his Break, he either Sets
wide to drive a Word or two more into the Break-line, or else he Sets close to get in that
little Word, because a Line with only a little Word in it, shews almost like a White-line,
which unless it be properly plac’d, is not pleasing to a curious Eye.’

Another extract from a London printing manual25 is shown in Figure 26; this one
is from 1864 instead of 1683. Although the author says that the justifying spaces
are to be made as nearly equal as possible, whoever did the composition of his book
did not follow the instructions it contains! Only one of the fine books considered
above has spaces that look the same, namely the Complutensian Polyglot. In fact,
printers only rarely achieved truly uniform spacing until machines like the Monotype

1 1 7 2 DONALD E . KNUTH AND MICHAEL F. PLASS

Figure 26. Printers do not always practice
what they preach.

they m y be all exmtly tho 8nmo length, it will almost
nlwajqs happcn that tho line will either b v e to be
brought out by putting in dditiond qeoecr betwean
tho wordu, or rontr&ed hy subGtuting thinnm R ~ S

than those U B ~ in lotting up the line& If the line by
that altoration is not quit0 tight, as additional thin
epnm may be inacrlcd between srwh wwds ns &gin
with j or end with f, and also after dl thepoints, but
they must, to look wsll, be put a% n w equdlyaa
possible botweenesch word in the line, md after each
sentence an om ~ p s w ie used

and Linotype made the task easier towards the end of the nineteenth century; and these
new machines, with their emphasis on speed, changed the philosophy of justification
so much that the quality of line breaking decreased when the spacing became uniform:
It became too inconvenient for the compositor to go back and reconsider any of the
earlier line breaks of a paragraph, when he was expected to turn out so many more
ems of type per hour.

The line breaks in Figure 26 are fairly well done in spite of the uneven spacing, given
that the compositor wished to avoid hyphenations and the psychologically bad break
in the phrase ‘with j’; it would have been slightly better, however, to move the word
‘but’ down to the third-last line.

Probably the most beautiful spacing ever achieved in any typeset book appeared in
The Art of Spacing26 by Samuel A. Bartels (1926). This book was hand set by the
author, and it contains about 50 characters per line. There are no loose lines, and
no hyphenated words; the final line of each paragraph always fills at least 65% of the
column width, yet ends at least one em from the right margin. Bartels must have
changed his original wording many times in order to make this happen; the author as
compositor is clearly able to enhance the appearance of a book.

General-purpose computers were first applied to typesetting by Georges P. Bafour,
And& R. Blanchard, and Franqois H. Raymond in France, who applied for patents
on their invention in 1954. (They received French and British patents in 1955, and a
U.S. patent in 1956.’” 2 8) This system gave special attention to hyphenation, and its
authors were probably the first to formulate the method of breaking one line at a time
in a systematic fashion. Figure 27 shows a specimen of their output, as demonstrated
at the Imprimerie Nationale in 1958. In this example the word ‘en’ was not included in
the second line because their scheme tended to favor somewhat loose lines: Each line
would contain as few characters as possible subject to the condition that the line was
feasible but the addition of the next K characters would not be feasible; here K was a
constant, and their method was based on a K-stage lookahead.

Michael P. Barnett began to experiment with computer typesetting at M.1 .T. in 1961,
and the work of his group at the Cooperative Computing Laboratory was destined
to become quite influential in the U.S.A. For example, the TROFF system29 that
is now in use at many computer centers is a descendant of Barnett’s PC6 system’,
via other systems called RUNOFF and NROFF. Another line of descent is represented
by the PAGE-1, PAGE-2, and PAGE-3 systems, which have been used extensively in
the typesetting ind~stry.~’, 3 1 , 32 All of these programs use the first-fit method of line
breaking that is described above.

At about the same time that Barnett began his M.I.T. studies of computer typeset-
ting, another important university research project with similar goals was started by
John Duncan at the University of Newcastle-Upon-Tyne Computing Laboratory.

BREAKING PARAGRAPHS INTO LINES 1173

Figure 27. This is a specimen of the output
produced in 1958 by the first computer-
controlled typesetting system in which all of
the line breaks were chosen automatically.

Line breaking was one of the first subjects studied intensively by this group, and they
developed a program that would find a feasible way to typeset a paragraph without
hyphenations, if any sequence of feasible breaks exists, given minimum and maximum
values for interword spaces. This program essentially worked by backtracking through
all possibilities, treating them in reverse lexicographic order (i.e., starting with the first
breakpoint b , as large as possible and using the same method recursively to find feasible
breaks (b2, b,, . . .) in the rest of the paragraph, then decreasing b, and repeating the
process if necessary). Thus it would either find the lexicographically largest feasible
sequence of breakpoints or it would conclude that none are feasible; in the latter case
hyphenation was attempted. This was the first systematic sequence of experiments to
deal with the line-breaking problem by considering a paragraph as a whole instead of
working line by line.

No distinction was made in these early experiments between one sequence of feasible
breakpoints and another; the only criterion was whether or not all interword spacing
could be confined to a certain range without requiring hyphenation. Duncan found
that when lines were 603 units wide, it was possible to avoid virtually all hyphenations
if spaces were allowed to vary between 3 and 12 units; with 405-unit lines, however,
hyphens were necessary about 3% of the time in order to keep within these fairly
generous limits, and when the line width decreased to 288 units the hyphenation
percentage rose to 12% or 16% depending on the difficulty of the copy being typeset.
More stringent intervals, such as the requirement of 4- to 9-unit spaces used in most
of the examples we have been considering above, were found to need more than 4%
hyphenations on 603-unit lines and 30% to 40% on 288-unit lines. However, these
numbers are higher than necessary because the Newcastle program did not search for
the best places to insert hyphens: Whenever it was unfeasible to set more than k lines,
the (k+ 1)st line was simply hyphenated and the process was restarted. One hyphen
generated by this method tends to spawn more in the same paragraph, since the first
line of a paragraph or of an artificially resumed paragraph is the most likely to require
hyphenation. Examples of the performance can be seen in the article where the method
was introduced’ (using spaces of 4 to 15 units for the first six pages and 4 to 12 units
for the rest), as well as in Duncan’s survey paper.2 These articles also discuss possible
refinements to the method, one idea being to try to avoid loose lines next to tight lines
in some unspecified manner, another being to try the method first with strict spacing
intervals and then to increase the tolerance before resorting to hyphenation.

Such refinements were carried considerably further by P. I . Cooper33 at Elliott
Automation, who developed a sophisticated experimental system for dealing with entire
paragraphs. Cooper’s system worked not only with minimum and maximum spacing
parameters, it also divided the permissible interword spaces into different sectors that
yielded different so-called ‘penalty scores’. Besides the penalties associated with the
spaces on individual lines, there were additional penalty scores based on the respective
spacing sectors of two consecutive lines, and the goal was to minimize the total penalty

1174 DONALD E. KNUTH AND MICHAEL F. PLASS

needed to typeset a given paragraph. Thus, his model was rather similar to the TEX
model that we have been discussing, except that all spaces were equivalent to each
other and special problems like hyphenation were not treated.

Cooper said that his program ‘employs a mathematical technique known as “dynamic
programming’’ ’ to select the optimum setting. However, he gave no details, and from
the stated computer memory requirements it appears that his algorithm was only an
approximation to true dynamic programming in that it would retain just one optimum
sum-of-penalties for each breakpoint, not for each (breakpoint, sector) pair. Thus, his
algorithm was probably similar to the method given in the appendix below.

Unfortunately, Cooper’s method was ahead of its time; the consensus in 1966 was
that such additional computer time and memory space were prohibitively expensive.
Furthermore his method was evaluated only on the basis of how many hyphens it would
save, not on the better spacing it provided on non-hyphenated lines. For example, J . L.
Dolby’s notes on this paper34 compared Cooper’s procedure unfavorably to Duncan’s
since the Newcastle method removed the same number of hyphens with what appeared
to be a less complex program. In fact, Cooper himself undersold his scheme with
unusual modesty and caution when he spoke about it: He said ‘this investigation does
not support the view that [my approach] should be given a general and enthusiastic
recommendation.. . . It has to be admitted that an aesthetic improvement is neither
predictable nor measurable.’ His method was soon forgotten.

In retrospect we can see that the defect in Cooper’s otherwise admirable approach
was the way it dealt with hyphenation: No proper tradeoff between hyphenated lines
and feasible unhyphenated lines was made, and the method would be restarted after
every hyphen had to be inserted. Thus, the hyphens tended to cluster as in the
Newcastle experiments.

Another approach to line breaking has recently been investigated by A. M. Pringle
of Cambridge University, who devised a procedure called Juggle.35 This algorithm
uses the best-fit method without hyphenation until reaching a line that cannot be
accommodated; then it calls a recursive procedure pushback that attempts to move
a word from the offending line up into the previous text. If pushback fails to solve
the problem, another recursive routine pullon tries to move a word forward from the
previous text; hyphenation is attempted only if pullon fails too. Thus, Juggle attempts
to simulate the performance of a methodical super-conscientious workman in the good
olde days of hand composition. The recursive backtracking can, however, consume a lot
of time by comparison with a dynamic programming approach, and an optimum
sequence of line breaks is not generally achieved; for example, Figure 2 would be
obtained instead of Figure 3 . Furthermore there are unusual cases in which feasible
solutions exist but Juggle will not find them; for example, it may be feasible to push
back two words but not one.

Hanan Samet has suggested another measure of optimality in his recent work on line
breaking.36 Since all methods for setting a paragraph in a given number of lines involve
the same total amount of blank space, he points out that the average interword space in
a paragraph is essentially independent of the breakpoints (if we ignore the fact that the
final line is different). Therefore he suggests that the variance of the interword spaces
should be minimized, and he proposes a ‘downhill’ algorithm that shifts words between
lines until no such local transformation further reduces the variance.

The first magazine publisher to develop computer aids to typesetting was Time Inc. of
New York City, whose line-breaking decisions went largely on-line in 1967. According

BREAKING PARAGRAPHS INTO LINES 1175

to comments made by H. D. Parks3’ at the time, line breaks were determined one by
one using a variation of the first-fit algorithm that we might call ‘tight-fit’; this gives
the most words per line except that hyphenation is done only when necessary, and
it is equivalent to the first-fit method if the normal interword spacing is the same as
the minimum. The tight-fit method had previously been used on the IBM 1620 Type
Composition System demonstrated in 1963 (see Duncan,2 pages 159-160), and it is
reasonable to suppose that essentially the same method was carried over to the Time
group when they dedicated two IBM 360/40 computers to the typesetting task.38

Since the final copy in Time magazine has been edited and re-edited, and since
manual intervention and last-minute corrections will change line-breaking decisions, it
is impossible to deduce what algorithm is presently used for Time articles merely by
examining the printed pages; but it is tempting to speculate about how the optimum-
fit algorithm might improve the appearance of such publications. Figure 28 on the
next page shows an interesting example based on page 22 of Time magazine dated
June 23, 1980; Version A shows the published spacing and Version B shows what the
new algorithm would produce in the same circumstances. All letters of the text have
been replaced by n’s of the corresponding width, so that it is possible to concentrate
solely on the spacing; however, it should be pointed out that this device makes bad
spacing look more innocuous, since a reader isn’t so annoyingly distracted when no
semantic meaning is present anyway.

The most interesting thing about Figure 28 is that the final line of the first paragraph
was brought flush right in order to balance the inserted photograph properly; this
photograph actually carried over into the right-hand column. Version A shows how the
desired effect was achieved by stretching the final three lines, leaving large gaps that
surely caught the curious eye of many a reader; Version B shows how the optimizing
algorithm is magically able to look ahead and make things come out perfectly. Perhaps
even more important is the fact that Version B avoids the need for letterspacing that
spoiled the appearance of lines 6, 9, 10, 23, and 32 in Version A.

Letterspacing-the insertion of tiny spaces between the letters of a word so as to
make large interword spaces less prominent-could readily be incorporated into the
box/glue/penalty model, but it is almost universally denounced by typographers. For
example, De Vinne14 said that letterspacing is improper even when the columns are
so narrow that some lines must contain only a single word; Bruce Rogers39 said ‘it
is preferable to put all the extra space between the words even though the resultant
“holes” are distressing to the eye.’ Even one-fourth of a unit of space between letters
makes the word look noticeably different. According to the style rules of the U.S.
Congressional Record4’, ‘In general, operators should avoid wide spacing. However,
no letterspacing is permitted.’ The optimum-fit algorithm therefore makes it possible
to comply more easily with existing laws.

The idea of applying dynamic programming to line breaking occurred to D. E. Knuth
in 1976, when Professor Leland Smith of Stanford’s music department raised a related
question that arises in connection with the layout of music on a page (see Clancy
and Knuth4’). During a subsequent discussion with students in a problem-solving
seminar, someone pointed out that essentially the same idea would apply to the texts of
paragraphs as well as to music. The box/glue/penalty model was developed by Knuth
in April 1977 when the initial design of TEX was made, although it wasn’t clear at
that time whether a general optimizing algorithm could be implemented with enough
efficiency for practical use. Knuth was blissfully unaware of Cooper’s supposedly

1176 DONALD E. KNUTH AND MICHAEL F. PLASS

nn N m ru A m
Anmum Nruuuuu~
nnruumnannnlln,

lnlnnll, nnn lllnnn-
mn L[LP mu, m m. Nn-
nnmnn 15% ru am mm’i
innn m, inn A n m u Nn-
i n n l l l n l n n a l n n n n n m m
m w n m nnlnnlal in N n m m
N~unnn ln lnn N w A m
nn inn un ru N I I U ~ U ,
mlnnllnlnllnnnnlnnnnm
nnnru; nm umn 3,000 rum-
m m m n m n n l l . n n n a m n N n n
hhm in Rnn Fhnnallln-un-

nlll nn rnIIlIl--1I1P

n l m l n n l n n m m l n n
NU NU llllt7 L[LP 11111-
nxunnnn N m N n n N n ~ m . Nnn
262.4 mum ~uup~ll ru mn
N.A.A.N. xn nrun umn
100 nlrulln nlnnnl nnn nullrl nn-
i n m mn Nmmunm, Nnuu,
N- ll~l~l N m -
nun mum. N m rummnnm
~llnlnll m man, m Nnrunn,
nnnni inn mrunrm nmmn ru
n 19in n m m n Nurum nmnm.
Nnnn, nnnnnu, l~lpnn 111 nrun
Lnnn 100 lnnnnnl nnn nnllnln
Ilnnnrmn, Nnn, Nnnnnn, N m ,

nn N m ru Flm
A11p11u1l1 Nnnnmm
n nni inu n nnnnrln,
nru nn nnnm-inn
lnlmu, nnn mnn-

nin inn i n n , in niiinin.
Nrarmmnn 15% ru lnn mun’i
mnn munu, inn A m N m
iiininnni i i n n n niniini ni
niiinni nninnini in Nni i i in
N m ln inn Nnunn N m nn
lnn unru Nmlnn, nnlnll mnnn-
llnnDll nnn mnun l l nn nnnnt;
ll~~ll l1l1ul3,OOO rum---
inn mllnna. mn N m Niun
m Ann Hnnallln-lnnrulm inn
1 ~ 1 n n m r u l n n N ~ N n n n n
l l ~ ~ ~ l l~lp 1 1 ~ n - m N m
N n n N ~ I ~ I I . Nnn 262.4
mnnru ru inn N.A.A.N. mnnn
m n u n m n 100 m u m nmuu
nnn nullrl nnlnnxn nnn NnlM-
ninni, Nnini , Nnnnnii nnn
nnnnunu N ~ u ~ u m n 1l111p1. N n m

IupIunnl ln mnn,
m Nnumn, mmm mn m i
nmnn ru n 19m lllll~ll~l
N n u m n n u m u . Nnnn, I~ILII~II~~,
mnrm in nrun m 100 mmrm
nnn hrmnn, NM,
Nnnnnn, N w , ru mn nm-

N m nnn nnnnn ~~1.lnlll. nmu mmnm m A m
N m m lllllll~l nnn mum. Nnn ~~nnlnlnnl nmmunnm ni
lnn N.A.A.N. m mmm, n n u n m nnn m u m nlnnnallnn m u

-

ln lnn nlllnlu lnlllll ru xlnnrum rlnrmll m m lM IlMln.
Nolnu nnn nnnnn mnmm nnnu nnnnnnn xtn A m i

N m nun llp~~ll~l nnn mum. Nnn nlnnlnlnnl nnmm-mm ru
inn N.A.A.N. m nmm, nnllnnllnla nnn mmnn rumrim mu

Figure 28. This example is based on the spacing in a recent issue of Time magazine, but
all of the letters have been replaced by n’s of various widths. I f the text were readable, the
line breaks in Version B would be less distracting than those in Version A.

unsuccessful experiments with dynamic programming, otherwise he might have rejected
the whole idea subconsciously before pursuing it at all.

During the summer of 1977, M. F. Plass introduced the idea of feasible breakpoints
into Knuth’s original algorithm in order to limit the number of active possibilities and
still find the optimum solution, unless the optimum was intolerably bad anyway. This
algorithm was implemented in the first complete version of TEX (March 1978), and
it appeared to work well. The unexpected power of the box/glue/penalty primitives
gradually became clear during the next two years of experience with TEX; and when
somewhat wild uses of negative parameters were discovered (as in the PASCAL and
Math Reviews examples discussed above), it was necessary to ferret out subtle bugs in
the original implementation.

BREAKING PARAGRAPHS INTO LINES 1177

Finally it became desirable to add more features to TEX’S line-breaking procedure,
especially an ability to vary the line widths with more flexibility than simple hanging
indentation. At this point a more fundamental defect in the 1978 implementation
became apparent, namely that it maintained at most one active node for each break-
point regardless of the fact that a single breakpoint might feasibly occur on different
lines; this meant that the algorithm could miss feasible ways to set a paragraph, in
the presence of sufficiently long hanging indentation. A new algorithm was therefore
developed in the spring of 1980 to replace TEX’S previous method; at that time the
refinements about looseness and adjacent-line mismatches were also introduced, so
that TEX now uses essentially the optimum-fit algorithm that we have discussed in
detail above.

PROBLEMS AND REFINEMENTS

One unfortunate restriction remains in TEX although it is not inherent in the box/
glue/penalty model: When a break occurs in the middle of a ligature (e.g., if ‘efficient’
becomes ‘ef-ficient’), the computation of character widths is more complicated than
usual. We must take into account not only the fact that a hyphen has some width, but
also the fact that ‘f‘ followed by ‘fi’ is wider than ‘ffi’. The same problem occurs when
setting German text, where some compound words change their spelling when they are
hyphenated (e.g., ‘backen’ becomes ‘bak-ken’ and ‘Bettuch’ becomes ‘Bett-tuch’). TEX
does not permit such optional spelling variants; it will only insert an optional hyphen
character among other unchangeable characters. Manual intervention is necessary in
the rare cases when a more complicated break cannot be avoided.

It is interesting to consider what extension would be needed to make the optimum-
fit algorithm handle cases like the dropping of m’s and n’s in Figure 22. The badness
function of a line would then depend not only on its natural width, stretchability, and
shrinkability; it would also depend on the number of m’s and the number of n’s on
that line. A similar technique could be used to typeset biblical Hebrew, which is never
hyphenated: Hebrew fonts intended for sacred texts usually include wide variants of
several letters, so that individual characters on a line can be replaced by their wider
counterparts in order to avoid wide spaces between words. For example, there is a
super-extended aleph in addition to the normal one. An appropriate badness function
for the lines of such paragraphs would take account of the number of dual-width
characters present.

The most serious unanticipated problem that has arisen with respect to TEX’S line-
breaking procedure is the fact that floating-point arithmetic was used for all the
calculations of badness, demerits, etc., in the original implementations. This leads
to different results on different computers, since there is so much diversity in existing
floating-point hardware, and since there are often two choices of breakpoints having
almost the same total demerits. It is important to be able to guarantee that all versions
of TEX will set paragraphs identically, because the ability to proofread, edit, and
print a document at different sites is becoming significant. Therefore the ‘standard’
version of TEX, planned for release in 1982, will use fixed-point arithmetic for all of
its calculations.

Books on typography frequently discuss a problem that may be the most serious
consequence of loose typesetting, the occasional gaps of white space that are called
‘houndsteeth’ or ‘lizards’ or ‘rivers’. Such ugly patterns, which run up through a

1178 DONALD E. KNUTH AND MICHAEL F. PLASS

sequence of lines and distract the reader’s eye, cannot be eliminated by a simple efficient
technique like dynamic programming. Fortunately, however, the problem almost never
arises when the optimum-fit algorithm is used, because the computer is generally able
to find a way to set the lines with suitably tight spacing. Rivers begin to be prevalent
only when the tolerance threshold p has been set high for some reason, for example in
Figure 7 where an unusually narrow column is being justified, or in Figure 18(d) where
the paragraph is two lines longer than optimum. Another case that sometimes leads to
rivers arises when the text of a paragraph falls into a strictly mechanical pattern, as
when a newspaper lists all of the guests at a large dinner party. Extensive experience
with TEX has shown, however, that manual removal of rivers is almost never necessary
after the optimum-fit algorithm has been used.

The box/glue/penalty model applies in the vertical dimension as well as in the
horizontal, so TEX is able to make fairly intelligent decisions about where to start
each new page. The tricks we have discussed for such things as ragged-right setting
correspond to analogous vertical tricks for such things as ‘ragged-bottom’ setting.
However, the current implementation of TEX keeps each page in memory until it has
been output, so TEX cannot store an entire document and find strictly optimum page
breaks using the algorithm we have presented for line breaks. The ‘best-fit’ method is
therefore used to output one page at a time.

Experiments are now in progress with a two-pass version of TEX that does find
globally optimum page breaks. This experimental system will also help with the
positioning of illustrations as near as possible to where they are cited in the accom-
panying text, taking proper account of the fact that certain pages face each other.
Many of these issues can be resolved by extending the dynamic programming technique
and the box/glue/penalty model of this paper, but some closely related problems can
be shown to be NP complete.42

APPENDIX: A STRIPPED-DOWN ALGORITHM

Many applications of line breaking (e.g., in word processors) do not need all of the
machinery of the general optimizing algorithm described in the text above, and it
is possible to simplify the general procedure considerably while at the same time
decreasing its space and time requirements, provided that we are willing to simplify the
problem specifications and to tolerate less than optimal performance when hyphenation
is necessary. The ‘suboptimum-fit’ program below is good enough to discover the line
breaks of Figure 3 or Figure 4(c), but it will not handle some of the more complicated
examples. More precisely, the stripped-down program assumes that

a) Instead of the general box/glue/penalty model, the input is specified by a sequence
w 1 . . . w, of nonnegative box widths representing the words of the paragraph and
the attached punctuation, together with a sequence of small integersg, . . .g, that
specifies the type of space to be used between words. For example, we might
have g k = 1 when a normal interword space follows the box of width wk, while
g, = 2 when there is to be no space since box k ends with an explicit hyphen,
and gk = 3 when box k is the end of the paragraph. Other type codes might be
used after punctuation. Each type g corresponds to three nonnegative numbers
(x,,~,, zg) representing respectively the normal spacing, the stretchability, and the
shrinkability of the corresponding type of space. For example, if types 1,2, and 3

BREAKING PARAGRAPHS INTO LINES 1179

are used with the meanings just suggested, we might have

(xl,Yl,Zl) = (6,392) between words
(x2,y2, z2) = (0, 0,O)
(x3,y3, z3) = (0, GO, 0)

after explicit hyphens or dashes
to fill the final line

in terms of &em units, where GO stands for some large number. The width w1
of the first box should include the blank space needed for paragraph indentation;
thus, the Grimm fairy tale example of Figure 1 would be represented by

w l , . . . , W , = 34,42,42,. . . ,24 ,39 ,30 , . . . , 6 0 , 7 9
g, ,..., g,= 1 , 1 , 1 ,..., 1 , 2, 1 , . . . , 1 , 3

corresponding to

‘LIn’ , ‘olden’, ‘times’, . . . , ‘old’, ‘lime-’, ‘tree’, . . . , ‘favorite’, ‘plaything.’

respectively, using widths from a typical roman font of type. The general input
sequences w1 . . . w, and g, . . .g, can be expressed in the box/glue/penalty model
by the equivalent specification

followed by ‘penalty(0, - 00,0)’ to finish the paragraph.
b) All lines must have the same width I, and each wk is less than 1.
c) No word will be hyphenated unless there is no way to set the paragraph without

violating minimum or maximum constraints on spacing. The minimum for type g
spaces is

z; = xg-zg

Y; = xg + PYg,
and the maximum is

where p is a positive tolerance that can be varied by the user. For example, if
p = 2 the maximum type g space is xg+ 2yg, the normal amount plus twice the
stretchability.

d) Hyphenation is performed only at the point where feasible line breaking becomes
impossible, even though it may be better to hyphenate an earlier word. Thus,
the general optimum-fit algorithm of the text will give substantially better results
when high-quality output is desired and hyphenation is frequently necessary.

e) No penalty is assessed for a tight line next to a loose line, or for consecutive
hyphenated lines, and the algorithm does not produce paragraphs that are longer
or shorter than the optimum length. (In other words, a = y = q = 0 in the
general algorithm.)

Under these restrictions, optimum breakpoints can be found with extra efficiency.

1180 DONALD E. KNUTH AND MICHAEL F. PLASS

The suboptimum-fit algorithm manipulates two arrays:

where sk denotes the minimum sum of demerits leading to a break after box k , or
s k = 00 if there is no feasible way to break there; and

where p k is meaningful only if sk < co, in which case the best case to end a line at
box k is to begin it with box pk + 1 . We also assume that

this represents an invisible box at the very end of the final line of the paragraph.
Besides the 4n + 4 storage locations for w1 . . . w,+ ,, g, . . .g,, so. . . s,+ and

p , . . . p n + 1 , and the memory required to hold the parameters I, p , and (xg, yi, .zi) for
each type g, the stripped-down algorithm needs only a few miscellaneous variables:

a = the beginning of the paragraph (normally 0, changed after hyphenation);
k = the current breakpoint being considered;
j = the breakpoint being considered as a predecessor of k;
i = the leftmost breakpoint that could feasibly precede k;

rn = the number of active breakpoints (i.e., subscriptsj2i with s j< co);
C = the normal width of a line from i to k;

C,,, = the maximum feasible width of a line from i to k;
Cmin = the minimum feasible width of a line from i to k;

Ckax = the maximum feasible width of a line f romj to k;
Cki, = the minimum feasible width of a line f romj to k;

C’ = the normal width of a line f romj to k;

r = adjustment ratio f romj to k;
d = total demerits from a to. . .to j to k;
d‘ = minimum total demerits known from a to. . . to k;
j’ = predecessor of k that leads to d’ total demerits, if d’ < 00.

All of these variables are integers, except r , which will be a fraction in the range
- 1 < r < p . The reader may verify the validity of the algorithm by verifying that
these interpretations of the variables remain invariant in key places as the program
proceeds.

Here now is the program, viewed from the ‘top down’:

BREAKING PARAGRAPHS INTO LINES 1181

if m = 0 or k > n then exit loop;

k : = k+l;
repeat;

if K > n then
begin output(a, n+ 1); exit loop;
end

I . x = x + wk+ 1 + XQ; xmax : = ‘cmax + y g k ; x m i n = Zmin f z&.;

else begin (try to hyphenate box k, then output from a to this break);
a : = k-1;
end;

repeat.

The operation ‘advance i by 1’ is carried out only when Zmin > I, and this cannot
happen when k = i+ 1 since Zmin = wk< I in such a case. Therefore the while
loop terminates; we have

(advance i by 1) =
begin if s i < c o then m:= m-1;
i:= i + l ;

end.
Z:= c-wi-zgl; Zmax:= C,a,-wi-y;l; xmin:= zrnin-wi-z1; gt

The inner loop of the suboptimal-fit program is simpler and faster than the corre-
sponding loop in the general optimum-fit algorithm because it does not consider active
breakpoints near k , only those that are approximately one line-width away:

(examine all feasible lines ending at k) =
beginj:= i; Z’:= Z; ELax:= Z,,,; C’ min . := C min, . . d’:= co;
while ELax 2 I do

begin if sj < GO then (consider breaking from a to . . . to j to k);
j : = j + 1;
X‘ : = C’- wj-xxg,; ZLax : = ZLax - wj-y;,; XLin : = x’ mln ’ - w J .- zr 9,’ *

end.

Again we can conclude that the while loop must terminate, since it will not be executed
when k = j + 1. The innermost code is easily fleshed out:

(consider breaking from a to . . . to j to k) =
begin if Z’ < I then r : = p - (I - Z’)/(XLax - Z’)
else if C’ > I then r : = (I - Z’)/(Z’ - ELi,,)
else r : = 0;
d : = sj+ (1 + 100 I r)3)2;
if d < d’ then

begin d’ : = d; j’ : = j ;
end;

end.
When hyphenation is necessary, the algorithm goes into panic mode, first searching

for the last value of i that was feasible, then attempting to split word k. At this point
the line from i to k - 1 is too short, and from i to k it is too long, so there is hope
that hyphenation will succeed.

1182 DONALD E. KNUTH AND MICHAEL F. PLASS

(try to hyphenate box k, then output from a to this break) =
begin loop: C : = C + wi + xE,;
Emax:= C,,, + ~ ~ + y i , ; C , , , ~ ~ : = C,,,in+wi+zi,; i: = i-1;

if si < 00 then exit loop;
repeat;

output(a, i);
(split box k at the best place);
(output the line up to the best split and adjust wk for continuing);
end.

Let us suppose that there are h, ways to split box k into two pieces, where the widths
of these pieces in the j th such split are wij and wij, respectively; here wij includes
the width of an inserted hyphen. An auxiliary hyphenation algorithm is supposed to be
able to compute hk and these piece widths on demand; this algorithm is invoked only
when we reach the routine ‘split box k at the best place’. If no hyphenation is desired
one can simply let hk = 0, and the program below becomes much simpler. There are
h,+ 1 alternatives to be considered, including the alternative of not splitting at all,
and the choice can be made as follows:

(split box k at the best place) =
begin (invoke hyphenation algorithm to compute h, and the piece widths);

for j : = 1 to hk do if Emin + wLj - wk < Z then
j ’ : = O ; d ’ : = a ;

begin C’ : = Z + wij - wk;
if C ’ d I then d : = 10000p~(Z-C’)/(100(C,,,-C)+1)
else d : = 1000O~(Y-Z)/(lOO(Z-C,i,)+ 1);
if d < d’ then

begin d’:= & j ’ : = j ;
end;

end;
end.

The final operation, ‘output the line up to the best split and adjust wk for continuing’,
will only be sketched here since it is much easier to state it informally than to introduce
still more notation. If j’ # 0, so that hyphenation is to be performed, the program
outputs a line from box i+l to box k inclusive, but with box k replaced by the
hyphenated piece of width wijr ; then wk is replaced by the width of the other fragment,
namely wij,. In the other case whenj’ = 0, the program simply outputs a line from
box i+ 1 to box k- 1 inclusive.

One more loose end needs to be tightened up: The procedure ‘output(a, i)’ simply
goes through the p table determining the best line breaks from a to i and typesets
the corresponding lines. One way to do this without requiring extra memory space
is to reverse the relevant p-table entries so that they point to successors instead of
predecessors:

procedure output(integer a, i) =
begin integer q, Y, s; q : = i; s : = 0;
while q # a do

beginr:=p,;p,:=s; s : = q ; q : = r ;
end;

BREAKING PARAGRAPHS INTO LINES 1183

while q # i do
begin (output the line from box q+ 1 to box s, inclusive);
q : = s ; s : = p q ;
end;

end.

In practice there is only a bounded amount of memory available for implementing this
algorithm, but arbitrarily long paragraphs can be handled if we make a minor change
suggested by Cooper33: When the number of words in a given paragraph exceeds some
maximum number nmax, apply the method to the first nmax words; then output all
but the final line and resume the method again, beginning with the copy carried over
from the line that was not output.

ACKNOWLEDGEMENTS

We wish to thank Barbara Beeton of the American Mathematical Society for numerous
discussions about ‘real world’ applications; we also are grateful to James Eve of the
University of Newcastle-Upon-Tyne and Neil Wiseman of Cambridge University for
helping us obtain literature that was not readily available in California; and we thank
the librarians of the rare book rooms at Columbia University and Stanford University
for letting us study and photograph excerpts from polyglot Bibles. John Wiley & Sons
Limited have taken unudual care in typesetting this paper in exact accordance with
the line breaks and page breaks found by TEX.

REFERENCES

1. Michael P. Barnett, Computer Typesetting: Experiments and Prospects, M.I.T. Press, Cambridge,

2. C. J. Duncan, ‘Look! No hands!’, The Penrose Annual 57, 121-168 (1964).
3. Michael R. Garey and David S. Johnson, Computers and Intractability, W. H. Freeman, San

4. Richard Bellman, Dynamic Programming, Princeton Univ. Press, Princeton, N. J., 1957.
5. M. Held and R. M. Karp, ‘The construction of discrete dynamic programming algorithms’, I B M

SystemsJ. 4, 136-147 (1965).
6. Donald E. Knuth, TEX and M E T A F O N T : New Directions in Typesetting, American Mathematical

Society and Digital Press, Bedford, Massachusetts, 1979.
7. Jakob Ludwig Karl Grimm and Wilhelm Karl Grimm, ‘Der Froschkonig (The Frog King)’, in

Kinder- und Hausmarchen, first published in Berlin, 1812. For the history of this story see Heinz
Rolleke, Die Altese Marchensammlung der Bruder Grimm, Fondation Martin Bodmer, Cologny-
Genbe , 1979, pp. 144-153.

8. C . J. Duncan, J . Eve, L. Molyneux, E. S. Page, and Margaret G. Robson, ‘Computer typesetting:
an evaluation of the problems,’ Printing Technology 7 , 133-151 (1963).

9. Donald E. Knuth, Seminumerical Algorithms, Vol. 2 of The Ar t of Computer Programming, second
edition, Addison-Wesley, Reading, Massachusetts, 1981.

Mass., 1965.

Francisco, 1979.

10. A. Frey, Manuel Nouveau de Typographie, Paris (1835), 2 vols.
11. Kathleen Jensen and Niklaus Wirth, P A S C A L User Manual and Report, Heidelberg, Springer-

Verlag, 1975.
12. Donald E. Knuth, ‘BLAISE, a preprocessor for PASCAL,’ file BLAISE.DEK[up,doc] at SU-AI on

the ARPA network (March 1979). The program itself is on file BLAISE.SAI[tex,dek].
13. Donald E. Knuth, Tau Epsilon Chi: A System for Technical Text, book in preparation.
14. Theodore Low De Vinne, Correct Composition, Vol. 2 of The Practice of Typography, Century, New

York, 1901. The cited material appears on pages 138 and 206.

1184 DONALD E. KNUTH AND MICHAEL F. PLASS

15. George Bernard Shaw, ‘On Modern Typography’, The Dolphin 4, 80-81 (1940).
16. T. H. Darlow and H. F. Moule, Historical Catalogue of the Printed Editions of Holy Scripture in the

17. Basil Hall, The Greatest Polyglot Bibles, The Book Club of California, San Francisco, 1966.
18. Jimbnez de Cisneros, sponsor, Uetus testamentum multiplici lingua nunc primo impressum, Industria

Arnaldi Guillelmi de Brocario in Academia Complutensi, 1522. [The printing was completed in
1517, but papal permission to publish this book was delayed for several years.]

library of The British and Foreign Bible Society, The Bible House, London, 1911.

19. Aug. Giustiniani, Psalteriunz, Genoa, 1516.
20. Benedictus Arias Montanus, editor, Biblia Sacra Hebraice, Chaldaice, Grace, & Latine, Christoph.

21. Brianus Waltonus, editor, Biblia Sacra Polgyglotta, Thomas Roycroft, London, 1657.
22. David Wolder, Biblia Sacra Grace , Latine & Germanice, Jacobus Lucius Juni., Hamburg, 1596.
23. Walter E. Houghton, Jr., ‘The History of Trades: its relation to seventeenth century thought,’

in Philip P. Wiener and Aaron Noland, eds., Roots of Scientific Thought, Basic Books, New York,
1957, pp. 354-381.

24. Joseph Moxon, Mechanick Exercises, J. Moxon, London, 1683. Reprinted by the Typothetae of
New York, 1896, with preface and notes by T. L. De Vinne; also reprinted by Oxford University
Press, London, 1958; but these reprints do not capture the full feeling of the original, with its
less sumptuous seventeenth-century workmanship. Quoted passages are from vol. 2, pp. 214-21 5,
226, 245, 248.

Plantinus, Antwerp, 1569-1 573.

25. D. G. Berri, The A r t of Printing, London, 1864.
26. Samual A. Bartels, The A r t of Spacing, The Inland Printer, Chicago, 1926.
27. G. P. Bafour, A. R. Blanchard, and F. H. Raymond, ‘Automatic Composing Machine,’ U.S. Patent

28. G. Bafour, ‘A new method for text composition-The BBR System,’ Printing Technology 5,

29. Joseph F. Ossanna, ‘NROFF/TROFF User’s Manual,’ Bell Telephone Laboratories Internal

30. Paul E. Justus, ‘There is more to typesetting than setting type’, IEEE Trans. on Prof. Commun.

31. John Pierson, Computer Composition using P A G E - 1 , Wiley-Interscience, New York, 1972.
3 2. Information International, Inc., ‘PAGE-3 Composition Language,’ privately distributed. First

edition, October 31, 1975; second edition, October 20, 1976. The language is sometimes called
‘PAGE-111’ because of the company that created it.

33. P. I . Cooper, ‘The influence of program parameters on hyphenation frequency in a sophisticated
justification program,’ Advances in Computer Typesetting [Proceedings of the 1966 International
Computer Typesetting Conference], The Institute of Printing, London, 1967, 176-178, 21 1-212.

34. [Untitled] Moderators’ summaries of the papers presented at the International Computer Type-
setting Conference at the University of Sussex, The Institute of Printing, London, 1966.

35. Alison M. Pringle, ‘Justification with fewer hyphens,’ Rainbow Memo 170, University of Cam-
bridge Computer Laboratory, March 1980,

36. Hanan Samet, ‘Heuristics for the line division problem in computer justified text,’ preprint, Uni-
versity of Maryland, 1980.

37. H. D. Parks, ‘Computerized processing of editorial copy’, Advances in Computer Typesetting [Pro-
ceedings of the 1966 International Computer Typesetting Conference], The Institute of Printing,
London, 1967, 176-178, 211-212.

38. Herman Parks, contributions to the discussions, Proc. ASIS Workshop on Computer Composition,
American Society for Information Science, 1971, pp. 143-145, 151, 180-182.

39. Bruce Rogers, Paragraphs on Printing, William E. Rudge’s Sons, New York, 1943, p. 88.
40. U.S. Government Printing Office, Style Manual, Washington, D.C., 1973. The quote is from rule 22

(catch?).
41. Michael J . Clancy and Donald E. Knuth, ‘A programming and problem-solving seminar,’ report

STAN-(3-77-606, Computer Science Department, Stanford University, April 1977, 85-88.
42. Michael F. Plass, ‘Optimal pagination techniques for automatic typesetting systems,’ PI1.D. thesis,

Stanford University, June 1981.

2762485, September 11, 1956. (See also British patent 771551 and French patent 1103000.)

no. 2, 1961, 65-75.

memorandum, Murray Hill, New Jersey, 1975.

PC-15, 13-16, 18 (1972).

