
Fonts
Steven R. Bagley



Introduction

• Considered how a computer stores text 
And how to lay it out…

• Also, how it can be described in a page 
description language

• How do we go from that to ink on a page?

• Look at how we draw text on screen…

(Or should that be pixels on the screen?)



Raster Display

• Need to understand how computers 
display images

• Very much tied to the way CRT monitors 
work…



Explain what happens



CRT Displays

• CRT beam swipes across screen from left 
to right

• Then jumps back to start of the next line 
on the left

• Eventually reaches the bottom of the 
display where it flies back to the top

• And repeats the process…



CRT Displays

• Happens so faster that the brain interprets 
it as a solid image

• Modulating the brightness of the CRT spot 
enables to construct the image, line-by-line

• By regularly reading bits from memory, the 
computer can modulate the CRT spot and 
produce an image



Raster Display

• Pixel clock specifies how fast bits are read 
from memory

• Providing the pixel clock is synchronized 
with the horizontal sync rate

• A fixed number of bits will appear per line 

• By manipulating the bits in memory we can 
build up the image



Raster Display

• If the bit is on, the CRT spot is on (white)

• If the bit is off, the CRT spot is off (black)

• All bits are laid out sequential in memory

• But we know the line length and so can find 
the relevant line



Raster Displays

• All modern computer displays work like 
this

• Vary the number of bits used and 
arrangement to support color and 
greyscale

• Even printers use similar techniques…

Mention how dot-matrix printers scan using 9/24 pins vertically aligned



Displaying Text

• Displaying text is as simple as setting the 
relevant bits in the shape of the glyphs

• But how do we know which bits to set?



Fonts

• Two main forms

• Bitmap fonts — store the bit patterns for 
each glyph

• Outline fonts — store instructions on 
how to draw the fonts



Bitmap fonts

• Stores the bit patterns for each glyph

• Computer then copies these bits into the 
relevant part of the screen memory

• Displaying the character on screen



Representing Glyphs

• Early computers had very simple font 
routines

• Each character was defined in (say) an 8x8 
grid

• Therefore, each character takes up 8 bytes



0x00

0x3C

0x42

0x42

0x7E

0x42

0x42

0x00



Displaying Glyphs

• Just write those 8 bytes into screen 
memory — line width bytes apart

• Alternatively, OR the bytes into screen 
memory (preserving any backgrodun)

• AND and Exclusive-OR can be used for 
alternative effects



Hardware Characters

• Possible to implement all this in hardware

• Some systems would just write character 
codes into screen memory

• And let the hardware look up the bit 
patterns



Bitmap Font

• This approach works but has two problems

• All characters are the same width

• A monospaced font

• Characters have to be imaged on a byte 
boundary (limiting the positions we can 
draw characters)



Shifting Glyphs

• Second problem is easy to solve

• If we bit shift the bytes containing the font 
data to the right

• Then when the bytes are written into the 
screen memory the character appears 
shifted to start at a different pixel

• But the right-hand edge will be cut-off



Shifting Glyphs

• Can stop the bits being chopped off by 
moving the byte into a 16-word

• Put the graphic data in the top 8 bits

• Shift to the right by n bits as needed…

• Then write the 16-bit word to the screen

Probably actually quicker to place in the bottom 8-bits and shift left



Proportionally Spaced

• Use the same approach to allow for 
proportionally spaced fonts

• Design the characters on a grid that is a 
multiple of 8 pixels

• But also encode a width value

• Advance that distance and draw the next 
character (shifting the pixels as needed)

Need to OR the bits into screen or we’ll chop off parts of the display



Bitmap Fonts

• Relatively simple to implement and fast…

• Can have varying sizes by using multiple 
bytes per character width

• But every point size needs its own set of 
bitmap

• And every resolution (so separate fonts for 
screen and printer)



Bitmap Fonts

• Offer the best quality

• Designer can hand tweak every pixel so the 
characters look right

• But they have to create a lot of them…

• Don Knuth created METAFONT which 
generates bitmap fonts from outline 
descriptions…



Outline Fonts

• An alternative is to describe the font in 
terms of how it’s drawn

• Vector-based

• Then scaled on demand to the right size

• Slower than a bitmap font since we need to 
‘rasterize’ each glyph



Font Caching

• Most good font engines actually cache the 
bitmap representations of glyphs

• Then paint the cached bitmap rather than 
rasterizing the glyphs each time it is used

• Speed things up massively



Type 3 fonts

• PostScript Type 3 fonts are a simple 
example

• Each character’s outline is stored as a 
simple PostScript procedure

• For each character that is imaged — the 
relevant procedure is called…

Talk them through the implementation of the chess font



Outline Font Problem

• There’s a problem with this

• As we get smaller and smaller point sizes

• There’s an increased risk that parts of the 
font will disappear (e.g. the cross piece of a 
letter ‘e’)

• Because they become less than one pixel 
wide



Outline Font Problem

• Dealing with 1-bit pixels

• No greyscale

• The result is text that is difficult to read

• Need an approach that stops this 
happening

• Type 1 fonts offer ‘hinting’ to solve this 
problem…


