
PDF Complex Structures
Steven R. Bagley

Introduction

• Looked at the structure of PDF over the
last few lectures

• Defined in terms of objects, stored in a file
indexed by the cross-reference table

• PDF uses these simple objects to build up
some complex structures which represent
the document

Today we’ll look at those complex structures

Graphs or Trees

• Complex structures made from
dictionaries

• That form a tree

• More accurately several overlapping trees

• Technically they form graphs but trees is
the term used…

• Root of these trees is the Catalog object

Complex Structures

• Dictionaries used to express a complex
structure have a /Type key

• This identifies the type of the object

• Value is another name object, e.g.
/Page
/Catalog

• Sometimes have /Subtype as well

The Catalog object

Key Required Description

Type Yes Always the name /Catalog

Pages Yes, indirect
Root of the Pages tree, a
reference to a Pages object

StructT
reeRoot

Optional
Reference to the root object of
the structure tree (from PDF 1.4)

AcroForm Optional
The document’s interactive form
dictionary

Lots of other bits that can control the appearance etc
Outlines are bookmarks
Controlling how the PDF should be opened
Won’t give every objects serialized form

The Catalog object

<<
 /Type /Catalog
 /Pages 2 0 R
 /PageMode /UseOutlines
 /Outlines 3 0 R
>>

Lots of other bits that can control the appearance etc
Outlines are bookmarks
Controlling how the PDF should be opened
Won’t give every objects serialized form

Structure of a PDF document

Outline
entry

Page

Thumbnail
image

Annotations

Bead

Bead

Thread

Outline
entry

Content
stream

Thread

Named
destinations

Article
threads

Interactive
form

Outline
hierarchy

Document catalog

Page

•
•
•

•
•
•

•
•
•

•
•
•

Page
tree

• • •

• • •

• • •

• • •

Gives the overall structure of the PDF
On top of this modern PDF variants, will have structure trees, XML-based metadata

Pages Tree

• Every PDF has a Pages tree

• Describes all the Pages in it

• Simple tree of Pages objects, with Page
objects as leaves

• Supposedly a balanced tree (but not
enforced)

Acrobat will rebalance it though

Pages Tree

• Balanced Tree makes it more manageable to
process big documents

• Acrobat’s arrays limited to 8191 items

• By using a tree you can hold an infinite
number of pages

Page Tree

• Easiest way to understand the Pages tree is
to look at the leaves first

• Most of the properties that can be defined
on a Page can be propagated up the tree

• These then apply to all its descendants

The Page Object

• Represents a single page

• Has to have a MediaBox (defines the
boundaries of the page)

• Has to have a reference to its parent

• A list of any resources it uses…

PDF Rectangles

• PDF requires you to specify rectangles in
many places (such as MediaBox)

• Always stored as an array of four numbers

• Lower-left, and upper-right corners,
[llx lly urx ury]

The Page Object

The Minimal page object
Anyone notice what’s missing?

The Page Object

<<
 /Type /Page
 /Parent 12 0 R
 /MediaBox [0 0 595 842]
 /Resources << >>
>>

The Minimal page object
Anyone notice what’s missing?

Page Contents

• A page doesn’t have to have any contents…

• But it usually will…

• In this case, there will be a /Contents key

• Can either be a reference to a stream

• Or an array of references to several
streams

Page contents

• PDF allows the content description to be
split up into multiple streams

• No difference in how its interpreted but
can make it easier to generate the content

• Finish with one stream then move to next

• Apps not required to preserve the split

Just preserve the contents

Content Stream

• A series of operands and operators in
reverse polish notation

• That describe the contents of the page

• Declarative, unlike PostScript

• Still has a concept of graphics state

• Notionally there’s an order in which the
operators can occur

PostScript allows interpretive execution (e.g. for loops) in PDF you can’t

Path object

Allowed operators:
• Path construction

Text object

Allowed operators:
• General graphics state
• Color
• Text state
• Text-showing
• Text-positioning
• Marked-content

Page description level

Allowed operators:
• General graphics state
• Special graphics state
• Color
• Text state
• Marked-content

Clipping path object

Allowed operators:
• None

Shading object

Allowed operators:
• None

In-line image object

Allowed operators:
• ID

External object

Allowed operators:
• None

(immediate)

Path-painting
operators

(immediate)

Path-painting
operators

m, re

EI BI Do

sh

BT ETW, W*

Diagram showing where certain operators are allowed
Acrobat will cope if they are wrong though (annoyingly!)

Category Operators

General graphics state w, J, j, M, d, ri, i, gs

Special graphics state q, Q, cm

Path Construction m, l, c, v, y, h, re

Path Painting S, s, f, F, f*, B, B*, b, b*, n

Clipping paths W, W*

Text objects BT, ET

Text state Tc, Tw, Tz, TL, Tf, Tr, Ts

Text positioning Td, TD, Tm, T*

Text showing Tj, TJ, ’, ”

Color CS, cs, SC, SCN, sc, scn, G, g, RG, rg, K, k

Shading Patterns sh

Inline images BI, ID, EI

XObjects Do

Page Properties

• Pages can have various properties

• Seen the MediaBox, also the CropBox,
BleedBox, TrimBox, ArtBox

• Rotation (in 90 degree steps)

• Inheritable down the pages tree

• Apply to all children of the Pages object

Pages

PagesPages
/Rotate 90

Pages
/Rotate 180

PagePage Page
/Rotate 0

PagePagePages

Page
/Rotate 90

Page
/Rotate 270

Page 1 Page 2 Page 5 Page 6 Page 7

Page 4Page 3

Talk through inheritance

Path object

Allowed operators:
• Path construction

Text object

Allowed operators:
• General graphics state
• Color
• Text state
• Text-showing
• Text-positioning
• Marked-content

Page description level

Allowed operators:
• General graphics state
• Special graphics state
• Color
• Text state
• Marked-content

Clipping path object

Allowed operators:
• None

Shading object

Allowed operators:
• None

In-line image object

Allowed operators:
• ID

External object

Allowed operators:
• None

(immediate)

Path-painting
operators

(immediate)

Path-painting
operators

m, re

EI BI Do

sh

BT ETW, W*

Lets think about how we display some text

Text in PDF
• Text is relatively

straightforward

• Start text object with BT

Text in PDF
• Text is relatively

straightforward

• Start text object with BT

BT

Text in PDF
• Text is relatively

straightforward

• Start text object with BT

• Set the text state (in this
case, font and size)

BT

Text in PDF
• Text is relatively

straightforward

• Start text object with BT

• Set the text state

BT
/F1 12 Tf

Text in PDF
• Text is relatively

straightforward

• Start text object with BT

• Set the text state

• Set the text position
(note separate from
paths)

BT
/F1 12 Tf

Unlike PostScript

Text in PDF
• Text is relatively

straightforward

• Start text object with BT

• Set the text state

• Set the text position

BT
/F1 12 Tf
100 100 Td

Unlike PostScript

Text in PDF
• Text is relatively

straightforward

• Start text object with BT

• Set the text state

• Set the text position

• Show the Text

BT
/F1 12 Tf
100 100 Td

Text in PDF
• Text is relatively

straightforward

• Start text object with BT

• Set the text state

• Set the text position

• Show the Text

BT
/F1 12 Tf
100 100 Td
(Hello world) Tj

Text in PDF
• Text is relatively

straightforward

• Start text object with BT

• Set the text state

• Set the text position

• Show the Text

• End the text object

BT
/F1 12 Tf
100 100 Td
(Hello world) Tj

Text in PDF
• Text is relatively

straightforward

• Start text object with BT

• Set the text state

• Set the text position

• Show the Text

• End the text object

BT
/F1 12 Tf
100 100 Td
(Hello world) Tj
ET

Text in PDF
• However, I’ve rarely seen

text imaged in this way

• More often than the font
is selected at size 1pt

• A text matrix set up that
scales it to the relevant
point size

BT
/F1 12 Tf
100 100 Td
(Hello world) Tj
ET

BT
/F1 1 Tf
12 0 0 12 100 100 Tm
(Hello world) Tj
ET

Goto voyeur and give an example
Probably related to the way that PDF keeps track of a line matrix that captures the text matrix
at the beginning of a line

Resources

• Note the font was not referred to by a
specific font name

• In PostScript, resources are just known
about by the VM

• PDF resources must be explicitly linked to
a page that uses them

• Name used in the content stream must
match an object in the Page’s resources

resources are anything external to the content stream referenced from within it
Enables the PDF viewer to ensure it has them all loaded before displaying the pageS
So /F1 must occur in the PAge’s resources or its an error

Page Resources

• Also inheritable — resources are first
looked for in the local resources dictionary

• Then in the Page’s parent and upwards…

• Error if not found

Page Resources

• Resources dictionary is broken down into
different types of resources

• Some are obvious — Fonts, Patterns,
ColourSpaces etc.

• Others less so — XObjects, ExtGState

• Also ProcSet, specifies what type of
operators used in the PDF

XObjects

• External Objects

• Graphics objects to be imaged on the page

• Raster images

• FormXObject

• PostScript XObject

FormXObject

• Self-contained description of some graphics
objects

• Think of it like a PDF sub-routine that can
be called to image some graphics

• Appearance can be cached…

External Graphics State

• ExtGState objects allow you to specify
some graphics state properties externally

• Dictionary mapping keys to values

• Some state parameters can be set via
operators

• Others limited to the graphics state
dictionary

Page Resources

• Since the resources map keys to indirect
objects

• There’s no need to have lots of instances of
the same resource for each page

• You can just point to the same font
description

Although it is possible to do that if they use different

Extensibility

• Easy to add features to PDF

• Just add extra keys and objects to the file

• PDF viewers will ignore what they don’t
understand

• Although they may also remove/corrupt it if
asked to save the document

• Also allows for forwards compatibility…

I had to, erm, circumvent some of Acrobat’s machinations for my COG work

Annotations

• One example are annotations

• Places things on top of the page

• PDF viewer can complete ignore them yet
still display the page contents

• Found by following the /Annots key in the
Page object

• Array of /Annot objects

Annotations were there from PDF1.0 but have been extended with new versions ever since

Annotations

• Many different types of annotations

• Text annotations — a la post-it note

• Link annotations — a la hypertext

• File attachments…

• Video and audio

• Sometimes don’t even look like annotations

Annot Object

• All /Annot objects will have

• A /Subtype giving the type of annotation

• A /Rect rectangle defining the location
of the annotation

• An optional /Border array

• Optionally specify a FormXObject to
define its appearance

Link annotations

• A simple annotation is the link

• Jumps to another location in the PDF

• Has a /Subtype /Link

• An optional string /Contents which gives
some human-readable form

• A destination /Dest

Link Annot Object

Link Annot Object

<<
 /Type /Annot
 /Subtype /Link
 /Rect [36 36 72 72]
 /Dest [3 0 R /FitR
 -4 399 199 533]
>>

Destinations

• Refers to a particular view of the document

• Destinations specified as an array

• First element is the page to go to (indirect
reference)

• Then a name object that describes how to
display that page in the window

Later PDF versions added support for web links

Destinations
Parameters Description

/XYZ left top zoom
left and top specify the coordinates of the
top-left corner. zoom specifies the zoom
level. If null then current value retained.

/Fit - Fit the page to the window

/FitH top Fit width to window, top specifies the
y-coordinate of the top of the window.

/FitV left Fit height to window, left specifies the x-
coordinate of the left edge of window.

/FitR
left bottom right

top
Fit the specified rectangle to the window.
Numerical smaller zoom is chosen…

Incremental Update

• Annotations are an example of something
you’d use incremental update to add

• Append annotation objects to PDF

• Append an updated Page object with same
object id

• Write new cross-reference table…

