PostScript

Steven R. Bagley

POSTSCRIPT

® Page Description Language...

® but also a full interpretative programming
language

® Very similar to Forth

® Designed by Adobe Systems Inc,
first released in the Apple Laserwriter
(1985)

Interpreted Language

® C/C++/Java languages are compiled

® Source code converted to machine code
and then executed

® PostScript interpreted

® PostScript tokens are executed as they are
encountered

Tokens

® PostScript language is defined in terms of
tokens

® Binary or ASCI| representation
® We are only concerned with the ASCI| form

e.g.add 42 sub div moveto arc selectfont

Token Types

® Simple Types
® Boolean

® Numbers
(real and integer)

® Names

® Operators

Token types

® Executable
(e.g. operators — actually names)

® Literal
object pushed onto the stack...

Stack

® PostScript is based around a stack

® Actually four stacks are used...

Four Stacks

Operand Stack

® |iteral values are placed onto the operand
stack

Operand Stack

345 mul add

Operand Stack

4 5 mul add

Operand Stack

5 mul add

Operand Stack

mul add

Operand Stack

® Executable operators take their parameters
off the stack

® This is why PostScript uses Reverse Polish
Notation

® [nternally, all computer languages tend to
compile down to this type of mechanism

Reverse Polish Notation -- specify the operands before the operator

Operand Stack

mul add

Operand Stack

=

mul add

Operand Stack

add

.

Also puts the result(s) back on the operand stack

Operand Stack

add

Operand Stack

Stack operations

® PostScript provides operators that let you
manipulate the operand stack

pop
clear

exch
dup
roll

pOp operator

pop

20

pOp operator

pop

20

clear operator

clear

20

clear operator

clear

20

exch operator

exch

20

exch operator

exch

20 3

dup operator

dup

20

dup operator

dup

20

20

20

roll operator

3 1 roll

(c)
(b)
(a)

roll operator

3 1 roll

(b)

roll operator

3 -1 roll

(c)
(b)
(a)

roll operator

3 -1 roll

(a)

(c)

(b)

Token Types

® Composite Types
® Strings
® Arrays

® Dictionaries
(associative arrays)
® These are all placed on the stack as
references to the object

So dup only duplicates the reference on the stack

Strings

® Strings are enclosed in parentheses () e.g.
(this 1s a string including () 1n 1it)

® Use a\ to escape unmatched parentheses

® string operator creates an empty string
e.g. 10 string

® cvs operator will create a textual
representation of an object on the stack

Arrays

® One-dimensional, but untyped
[1 /Fred 42.5 (Fred) cvs |

® Array creation is a stack-based operation

® Access array values using get/put
operators

® Create an empty array with the array
operator

[places a mark on the stack
] creates an array containing all the objects on the stack

So this array will be 1, /Fred, (42.5) because the cvs operator will have been executed
get/put take an array and an index as parameters -- the array is popped from the stack so make
sure you store a reference somewhere

Executable Arrays

® |n PostScript, the procedure is just an array
of objects

® But the array is marked as executable

® Defined:
{12 add }

® Can define it to a name and then use it like
an operator

/sum { 1 2 add } def

Dictionaries

® Obijects associated to a PostScript name

® Created by n dict operator
® Where n is the size of the dictionary

® Fixed size in Level | PostScript

Dictionary Stack

® On the top of the stack is userdict, which is
used by default to store values
e.g./pointsize 42 def

@ userdict is limited by the interpreter’s
memory

Dictionary Stack

® A non-literal name causes the dictionary
stack to be searched to find an association

e [f found, that object is executed

® PostScript operators are defined in
systemdict which is always at the bottom

of the stack

® So it is possible to redefine operators. Take
care!

Using Dictionaries

® /mydict 5 dict def

® Creates a dictionary and associates it with
the key /mydict in userdict

@® put/get allow access to values in a
dictionary

@® begin places a dictionary on the dictionary
stack, this allows scoping of names

@ end pops top dictionary from the stack

Anatomy of PostScript

® Document Structuring Convention

® Guidelines, not mandatory

® However, it is good practice to include the
standard header at the top of your files

%!PS-Adobe-2.0

Fancy Graphics

Imaging model

Device Space

User Space (Frame Buffer)

Physical Page

-z

Affected by Affected by Affected by
Graphics state Paint Operations showpage

Imaging model

® Origin is at the bottom-left of the page
® Positive is up and to the right
® The current scale is 72dpi

® There is no current point,
There is no current path

Drawing

® Graphics are created by using operators to
form paths

® The path can then be stroked or filled

® The painting operators use the current
colour and change bits in device space

Drawing

® Drawing operators are:

newpath clear the current path

X y moveto set the current point to (x,y)

x y lineto draw a line to point (x,y)

X y rmoveto move to currentpoint + (X,y)

X y rlineto draw line to currentpoint +(x,y)
X y r angl ang2 arc |append anticlockwise circular arc

rmoveto/rlineto allow for relative motion
arcs are centred on x y, with raidus r from angle 1 to angle 2

Transformation

® All drawing operations are run through the
Current Transformation Matrix (CTM)

® Set by operators thus:
1l 2 scale
72 72 moveto
27.5 rotate

® Fach operator concatenates the relevant
new matrix with the current CTM

Graphic Demos

Don’t forget to showpage or you won'’t see things!

