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POSTSCRIPT

® Page Description Language...

® but also a full interpretative programming
language

® Very similar to Forth

® Designed by Adobe Systems Inc,
first released in the Apple Laserwriter
(1985)



Interpreted Language

® C/C++/Java languages are compiled

® Source code converted to machine code
and then executed

® PostScript interpreted

® PostScript tokens are executed as they are
encountered



Tokens

® PostScript language is defined in terms of
tokens

® Binary or ASCI| representation
® We are only concerned with the ASCI| form

e.g.add 42 sub div moveto arc selectfont



Token Types

® Simple Types
® Boolean

® Numbers
(real and integer)

® Names

® Operators



Token types

® Executable
(e.g. operators — actually names)

® Literal
object pushed onto the stack...



Stack

® PostScript is based around a stack

® Actually four stacks are used...



Four Stacks




Operand Stack

® |iteral values are placed onto the operand
stack



Operand Stack

345 mul add




Operand Stack

4 5 mul add




Operand Stack

5 mul add




Operand Stack

mul add




Operand Stack

® Executable operators take their parameters
off the stack

® This is why PostScript uses Reverse Polish
Notation

® [nternally, all computer languages tend to
compile down to this type of mechanism

Reverse Polish Notation -- specify the operands before the operator




Operand Stack

mul add




Operand Stack

=

mul add




Operand Stack

add

.

Also puts the result(s) back on the operand stack




Operand Stack

add




Operand Stack




Stack operations

® PostScript provides operators that let you
manipulate the operand stack

pop
clear

exch
dup
roll



pOp operator

pop

20




pOp operator

pop
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clear operator

clear
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clear operator

clear
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exch operator

exch

20




exch operator

exch
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dup operator

dup
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dup operator
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roll operator

3 1 roll
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roll operator

3 1 roll
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roll operator

3 -1 roll
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roll operator

3 -1 roll
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Token Types

® Composite Types
® Strings
® Arrays

® Dictionaries
(associative arrays)
® These are all placed on the stack as
references to the object

So dup only duplicates the reference on the stack




Strings

® Strings are enclosed in parentheses () e.g.
(this 1s a string including () 1n 1it)

® Use a\ to escape unmatched parentheses

® string operator creates an empty string
e.g. 10 string

® cvs operator will create a textual
representation of an object on the stack




Arrays

® One-dimensional, but untyped
[ 1 /Fred 42.5 (Fred) cvs |

® Array creation is a stack-based operation

® Access array values using get/put
operators

® Create an empty array with the array
operator

[ places a mark on the stack
] creates an array containing all the objects on the stack

So this array will be 1, /Fred, (42.5) because the cvs operator will have been executed
get/put take an array and an index as parameters -- the array is popped from the stack so make
sure you store a reference somewhere




Executable Arrays

® |n PostScript, the procedure is just an array
of objects

® But the array is marked as executable

® Defined:
{12 add }

® Can define it to a name and then use it like
an operator

/sum { 1 2 add } def



Dictionaries

® Obijects associated to a PostScript name

® Created by n dict operator
® Where n is the size of the dictionary

® Fixed size in Level | PostScript



Dictionary Stack

® On the top of the stack is userdict, which is
used by default to store values
e.g./pointsize 42 def

@ userdict is limited by the interpreter’s
memory



Dictionary Stack

® A non-literal name causes the dictionary
stack to be searched to find an association

e [f found, that object is executed

® PostScript operators are defined in
systemdict which is always at the bottom

of the stack

® So it is possible to redefine operators. Take
care!



Using Dictionaries

® /mydict 5 dict def

® Creates a dictionary and associates it with
the key /mydict in userdict

@® put/get allow access to values in a
dictionary

@® begin places a dictionary on the dictionary
stack, this allows scoping of names

@ end pops top dictionary from the stack



Anatomy of PostScript

® Document Structuring Convention

® Guidelines, not mandatory

® However, it is good practice to include the
standard header at the top of your files

%!PS-Adobe-2.0



Fancy Graphics




Imaging model

Device Space

User Space (Frame Buffer)

Physical Page

-z

Affected by Affected by Affected by
Graphics state Paint Operations showpage




Imaging model

® Origin is at the bottom-left of the page
® Positive is up and to the right
® The current scale is 72dpi

® There is no current point,
There is no current path



Drawing

® Graphics are created by using operators to
form paths

® The path can then be stroked or filled

® The painting operators use the current
colour and change bits in device space



Drawing

® Drawing operators are:

newpath clear the current path

X y moveto set the current point to (x,y)

x y lineto draw a line to point (x,y)

X y rmoveto move to currentpoint + (X,y)

X y rlineto draw line to currentpoint +(x,y)
X y r angl ang2 arc |append anticlockwise circular arc

rmoveto/rlineto allow for relative motion
arcs are centred on x y, with raidus r from angle 1 to angle 2




Transformation

® All drawing operations are run through the
Current Transformation Matrix (CTM)

® Set by operators thus:
1l 2 scale
72 72 moveto
27.5 rotate

® Fach operator concatenates the relevant
new matrix with the current CTM



Graphic Demos

Don’t forget to showpage or you won'’t see things!




