
Adobe Graphics Model
Steven R. Bagley

Introduction

• Today’s lecture — look at the Adobe
Graphics Model

• Next few lectures look at how we can
drive the AGM from Postscript, PDF and
SVG

• Get in the lab next Monday and have a
play…

Adobe Graphics Model

• Vector-based

• But output aimed at raster devices

• Doesn’t make any assumption about how
these devices will be implemented

• Vectors scan-converted to the raster form

• Need to make decisions about which
pixels are inside or outside a shape

Tend to think of them as a raw bitmap in memory but not all are…
Likely that vectors won’t fall directly on pixel boundaries -- this is particularly important
when converting text which needs to be legible…

Adobe Graphics Model

• Works like bitmap drawing package

• Each operation paints onto the page

• Once operation executed it cannot be
removed

• Only painted over

E.g MS Paint

Paint

• Painted figures maybe letter shapes (glyphs),
general filled shapes, lines or raster images

• Paint maybe in colour, black, white or gray

• Paint may take the form of a repeating
pattern or gradient

• Maybe clipped to appear within other
shapes as placed on the page

Painting Model

• No matter the color it is put on the page
as if it were opaque

• Although later revisions of the AGM
allow for transparency

• Once page has been completely composed

• The accumulated marks are rendered and
the page cleared ready for the next…

Spaces

• AGM makes use of the notion of
co-ordinate spaces

• Main two are

• User Space

• Device Space

• Others include text space, glyph space,
image space and form space

User Space

• User space defines a specific co-ordinate
space

• Abstracts the AGM from any specific device

• Resolution, origin etc. all vary across devices

• If the AGM didn’t abstract the device away
then a page would look vastly different on
each device…

GraphicsCHAPTER 4
138

If coordinates in a PDF file were specified in device space, the file would be
device-dependent and would appear differently on different devices. For exam-
ple, images specified in the typical device spaces of a 72-pixel-per-inch display
and a 600-dot-per-inch printer would differ in size by more than a factor of 8; an
8-inch line segment on the display would appear less than 1 inch long on the
printer. Figure 4.2 shows how the same graphics object, specified in device space,
can appear drastically different when rendered on different output devices.

FIGURE 4.2 Device space

User Space

To avoid the device-dependent effects of specifying objects in device space, PDF
defines a device-independent coordinate system that always bears the same rela-
tionship to the current page, regardless of the output device on which printing or
displaying will occur. This device-independent coordinate system is called user
space.

The user space coordinate system is initialized to a default state for each page of a
document. The CropBox entry in the page dictionary specifies the rectangle of
user space corresponding to the visible area of the intended output medium (dis-
play window or printed page). The positive x axis extends horizontally to the
right and the positive y axis vertically upward, as in standard mathematical prac-
tice (subject to alteration by the Rotate entry in the page dictionary). The length
of a unit along both the x and y axes is 1 ⁄72 inch. This coordinate system is called
default user space.

Device space for
72-dpi screen

Device space for
300-dpi printer

Example of difference in apparent size of object with same dimensions on different devices

User Space

• Defines a resolution of 72dpi

• Defines a co-ordinate system

• x positive to right

• y positive upwards

• Exception is SVG…

• (0,0) is usually the bottom-left corner

Roughly equivalent to the typographic dimension of a point
SVG has y positive downwards (due to being aimed at the

User Space

• User space is effectively unbounded

• Can happily use positive and negative co-
ordinates

• You can define which rectangular section is
taken as the page

Device Space

• User Space constant regardless of output device

• Device space describes how a specific device’s
pixels are addressed

• Varies depending how the device loads paper,
addresses the screen etc.

• Necessary to transform co-ordinates from User
space to Device Space

Resolution, origin, and orientation etc. all vary…

GraphicsCHAPTER 4
140

FIGURE 4.3 User space

Other Coordinate Spaces

In addition to device space and user space, PDF uses a variety of other coordinate
spaces for specialized purposes:

• The coordinates of text are specified in text space. The transformation from text
space to user space is defined by a text matrix in combination with several text-
related parameters in the graphics state (see Section 5.3.1, “Text-Positioning
Operators”).

• Character glyphs in a font are defined in glyph space (see Section 5.1.3, “Glyph
Positioning and Metrics”). The transformation from glyph space to text space
is defined by the font matrix. For most types of font, this matrix is predefined
to map 1000 units of glyph space to 1 unit of text space; for Type 3 fonts, the
font matrix is given explicitly in the font dictionary (see Section 5.5.4, “Type 3
Fonts”).

User space

Device space for
72-dpi screen

Device space for
300-dpi printer

CTM

Current Transformation Matrix

• AGM handles conversion from User Space
to Device Space automatically

• Every co-ordinate is mathematically
transformed to device space by multiplying
it with a transformation matrix

• Referred to as the Current Transformation
Matrix

Transformation Matrices

• Several types of geometric transformations
we may need to do

• Translate (shift) the origin to point (tx,ty)

• Scale by (sx,sy)

• Rotate around the origin

• All of these affine transformations can be
captured in a single transformation matrix

Transformation Matrix

• Co-ordinate is expressed as a 3x1 matrix

 [x y 1]

• Multiplied by a 3x3 transformation matrix

• Gives a new 3x1 matrix containing the
transformed co-ordinates

Transformation Matrix

Multiply this out

Transformation Matrix

Multiply this out

Transformation Matrix

• By specifying the right values for a, b, c, d,
e, f, tx and ty

• We can specify a translation, scale or
rotation transformation

Give some examples

Transformation Matrices

Identity

Combining TMs

• Can combine two Transformation Matrices
into a single one with the same effect

• Multiply the two Transformation Matrices
together

• However order matters…

• Matrix on right-hand of multiplication
happens first

Matrix mutliplication is not commutative

Scale and Translate

Scale then translate

Translate then scale
Show multiplication out…

User to Device Space

• By combining separate affine
transformations into a single matrix

• We can develop a single TM that can
convert from user space to device space

• Usually a combination of translates and
scales

US to DS

• Suppose we have 300dpi printer which has
an origin at the top of the page going down

• Need to:

• Scale user space co-ordinates by 300/72

• Invert the y-axis (can do this by scaling
the y-axis alone by -1)

• Translate the origin so it’s at the top of
the page

Assume page height is A4 so 595x842
Work through example
Show the three matrices, then combine them in the right order

US to DS example

Start by moving the origin to the top-left (in user space)
Then scale y by -1 (now origin is the top left)
Finally can scale by 300/72 to adjust for device resolution

Current Transformation Matrix

• AGM goes further

• Allows additional transformations to be
specified that can transform user space

• These are concatenated with the User
Space to Device Space

• Makes it very easy to create graphical
effects (e.g. rotated text)

Transform the coordinate space

Graphics State

• The AGM holds a graphics state

• A set of parameters that define the
framework which graphics are drawn

• e.g. current color, or line width

• Need to be set before drawing something

• Persist until its changed

Graphics State Parameters

• Current Transformation
Matrix

• Position

• Path

• Clipping Path

• Colour Space and
Colour

• Font

• Line width

• Line cap — shape of line
ends

• Line Join

• Miter limit

• Dash pattern

Colour can be split into fill and stroke in PDF and SVG

Using AGM

• Set up Graphics State

• Construct path then fill or stroke it

• Or Image text etc.

• Modify Graphics State

• Draw some more stuff…

• And repeat until

