
Text Search
Steven R. Bagley

Introduction

• Last lecture, looked at Text Search
algorithms

• Saw how by careful constructing our
algorithm

• We can massively reduce the time taken to
search

String Search

• Definitions

• The pattern — string to search for

• The text — the text we want to search

• Problem

• Does pattern occurs inside text

Will use these throughout the lecture

Text Search

• Naive Search — Test pattern in every
possible alignment with text

• Boyer-Moore — Uses information about
the mismatches to skip big chunks of text

Boyer-Moore

• If mismatching char not in pattern slide
length of pattern

• Slide so the rightmost occurrence of char
in pattern is aligned with char in text

• Slide so that a matched subpattern is
aligned with the rightmost occurrence of
the subpattern not preceded by this
mismatched char

(assuming this is not backwards)

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Okay, found a character that matches, step back to test the previous character

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Okay, found a character that matches, step back to test the previous character

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Okay, found a character that matches, step back to test the previous character

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Okay, found a character that matches, step back to test the previous character

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Okay, found a character that matches, step back to test the previous character

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Okay, found a character that matches, step back to test the previous character

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Okay, found a character that matches, step back to test the previous character

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Okay, found a character that matches, step back to test the previous character

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Okay, found a character that matches, step back to test the previous character

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Look we’ve matched the string

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Look we’ve matched the string

Boyer-Moore

• Nice, fast algorithm

• Easy to implement, although requires some
largish tables

• The ‘gold standard’, other algorithms
compared to this

• Longer the pattern the faster it tends…

Boyer-Moore

• But can break down if the alphabet is small
e.g. DNA sequences – only four letters (TACG)

• Much more likely that the character will be
found close to the right edge

• So the pattern will move by a much smaller
amount each time

Search Algorithms

• However, other algorithms don’t suffer
from this problem

• One such algorithm makes use of the
Burrows-Wheeler Transform…

Burrows-Wheeler Transform

• Developed in 1994 by Mike Burrows and
David Wheeler

• Takes a string and transforms it into
another string

• However, this transformed string is much
more compressible

• What’s compression got to do with search?

David Wheeler one of the original computer people at Cambridge
Mike Burrows went on to design Altavista and now works at Google (via MS)

Suffix Arrays

• Helps to understand BWT search if we first
look at a simpler related search algorithm

• The Suffix Array is an array of all possible
suffixes of text

• Where a suffix is a substring that ends with
the last character of text

Gives some examples with Mississippi, e.g.
i, pi, ippi, ssippi, Mississippi are all suffixes
But Miss, and ssiss are not (because they don’t run to the end of the string)

0 MISSISSIPPI

1 ISSISSIPPI

2 SSISSIPPI

3 SISSIPPI

4 ISSIPPI

5 SSIPPI

6 SIPPI

7 IPPI

8 PPI

9 PI

10 I

All possible suffixes of Mississippi

Searching Suffix Arrays

• If pattern exists within the text then it will
be a prefix of one the suffix array entries

• Therefore, if we compare the pattern with
the beginning of each suffix

• We can find our string

• It’s exactly the same as our original naive
search…

prefix, one array will start with it

0 MISSISSIPPI

1 ISSISSIPPI

2 SSISSIPPI

3 SISSIPPI

4 ISSIPPI

5 SSIPPI

6 SIPPI

7 IPPI

8 PPI

9 PI

10 I

Suppose we are search for the pattern ‘SIP’

0 MISSISSIPPI

1 ISSISSIPPI

2 SSISSIPPI

3 SISSIPPI

4 ISSIPPI

5 SSIPPI

6 SIPPI

7 IPPI

8 PPI

9 PI

10 I

SIP

Suppose we are search for the pattern ‘SIP’

0 MISSISSIPPI

1 ISSISSIPPI

2 SSISSIPPI

3 SISSIPPI

4 ISSIPPI

5 SSIPPI

6 SIPPI

7 IPPI

8 PPI

9 PI

10 I

SIP

Suppose we are search for the pattern ‘SIP’

0 MISSISSIPPI

1 ISSISSIPPI

2 SSISSIPPI

3 SISSIPPI

4 ISSIPPI

5 SSIPPI

6 SIPPI

7 IPPI

8 PPI

9 PI

10 I

SIP

Suppose we are search for the pattern ‘SIP’

0 MISSISSIPPI

1 ISSISSIPPI

2 SSISSIPPI

3 SISSIPPI

4 ISSIPPI

5 SSIPPI

6 SIPPI

7 IPPI

8 PPI

9 PI

10 I

SIP

Suppose we are search for the pattern ‘SIP’

0 MISSISSIPPI

1 ISSISSIPPI

2 SSISSIPPI

3 SISSIPPI

4 ISSIPPI

5 SSIPPI

6 SIPPI

7 IPPI

8 PPI

9 PI

10 I

SIP

Suppose we are search for the pattern ‘SIP’

0 MISSISSIPPI

1 ISSISSIPPI

2 SSISSIPPI

3 SISSIPPI

4 ISSIPPI

5 SSIPPI

6 SIPPI

7 IPPI

8 PPI

9 PI

10 I

SIP

Suppose we are search for the pattern ‘SIP’

0 MISSISSIPPI

1 ISSISSIPPI

2 SSISSIPPI

3 SISSIPPI

4 ISSIPPI

5 SSIPPI

6 SIPPI

7 IPPI

8 PPI

9 PI

10 I

SIP

Suppose we are search for the pattern ‘SIP’

Suffix Array Search

• Just as slow as our original naive algorithm

• Also need to build up array (more RAM)

• That’s true — but if you sort the suffix
array, you can use binary search

• Finds pattern in O(m log n) time

• Also, finds all occurrences

more RAM than the naive approach, but probably about the same as Boyer-Moore

10 I

7 IPPI

4 ISSIPPI

1 ISSISSIPPI

0 MISSISSIPPI

9 PI

8 PPI

6 SIPPI

3 SISSIPPI

5 SSIPPI

2 SSISSIPPI

Suppose we are search for the pattern ‘SIP’
Oh look found it in two

10 I

7 IPPI

4 ISSIPPI

1 ISSISSIPPI

0 MISSISSIPPI

9 PI

8 PPI

6 SIPPI

3 SISSIPPI

5 SSIPPI

2 SSISSIPPI

SIP

Suppose we are search for the pattern ‘SIP’
Oh look found it in two

10 I

7 IPPI

4 ISSIPPI

1 ISSISSIPPI

0 MISSISSIPPI

9 PI

8 PPI

6 SIPPI

3 SISSIPPI

5 SSIPPI

2 SSISSIPPI

SIP

Suppose we are search for the pattern ‘SIP’
Oh look found it in two

Burrows-Wheeler

• The BWT is incredible simple to implement

• Although understand how it works is not
so simple

• BWT takes a string, and produces an NxN
matrix (where N is the length of the string)

• First row of the matrix is just the string

BWT == Burrows-Wheeler Transform

M I S S I S S I P P I

Burrows-Wheeler

• For every other row take the previous row
and rotate it to the left by one…

• Putting the character shifted out the left
back round into the right

• The resulting matrix is then sorted
lexicographcially

M I S S I S S I P P I

I S S I S S I P P I M

S S I S S I P P I M I

S I S S I P P I M I S

I S S I P P I M I S S

S S I P P I M I S S I

S I P P I M I S S I S

I P P I M I S S I S S

P P I M I S S I S S I

P I M I S S I S S I P

I M I S S I S S I P P

M I S S I S S I P P I

I S S I S S I P P I M

S S I S S I P P I M I

S I S S I P P I M I S

I S S I P P I M I S S

S S I P P I M I S S I

S I P P I M I S S I S

I P P I M I S S I S S

P P I M I S S I S S I

P I M I S S I S S I P

I M I S S I S S I P P

M I S S I S S I P P I

I S S I S S I P P I M

S S I S S I P P I M I

S I S S I P P I M I S

I S S I P P I M I S S

S S I P P I M I S S I

S I P P I M I S S I S

I P P I M I S S I S S

P P I M I S S I S S I

P I M I S S I S S I P

I M I S S I S S I P P

M I S S I S S I P P I

I S S I S S I P P I M

S S I S S I P P I M I

S I S S I P P I M I S

I S S I P P I M I S S

S S I P P I M I S S I

S I P P I M I S S I S

I P P I M I S S I S S

P P I M I S S I S S I

P I M I S S I S S I P

I M I S S I S S I P P

I M I S S I S S I P P

I P P I M I S S I S S

I S S I P P I M I S S

I S S I S S I P P I M

M I S S I S S I P P I

P I M I S S I S S I P

P P I M I S S I S S I

S I P P I M I S S I S

S I S S I P P I M I S

S S I P P I M I S S I

S S I S S I P P I M I

Lexicogrpahically sorted version!

BWT

• The last column of this is then extracted as
the product of the BWT

• This transformed string made from the
original string is highly compressible

Move-To-Front Encoding, then huffman coding

I M I S S I S S I P P

I P P I M I S S I S S

I S S I P P I M I S S

I S S I S S I P P I M

M I S S I S S I P P I

P I M I S S I S S I P

P P I M I S S I S S I

S I P P I M I S S I S

S I S S I P P I M I S

S S I P P I M I S S I

S S I S S I P P I M I

Last column taken and used as basis for compression

t,<s]]meem =========-+-
<<nhiiiiix]mhiiiinx]]]te]eskt]]tiejm]iiijsc
wwewewes*e m mte=e wwt= =+
+- ;t;cdm==mnnnt ;;;;;tttt tt;;;;;m
wwt;;tt=,on;t;======= m=e t= tn==,,<<<<<==t
y)n};t;= (r" ((nnnrtthkhhereydyk
mrrrrrrrrreme ntf+)f+e++tt+-+++s(tt)(stee)
("](ketx"1/ }../ ++++++++iniiixih"et]d
-jlommta]mm]trtrssssa]t**! = =
[222555))))))))))k)]])])ste]eentste]*0]1])x
]])]0]])*]0600000eee6e100)0e
= > ! ! dd t (! TTZZZ(eee
OOFO"ed (aaa(dadds IIE ("tttttttt!
WWsssBBBBBtcpetkcccccccpcpekkeeekkkkktyeet]
iij]ii[[hiiiiie[[eeei]h[6h]iiii !

Extract from a compressed Java program — lots of repeated characters

BWT

• Reversible transform – given the last column,
the entire matrix can be regenerated

• Store index of the original string row

• Exploits the fact that the first column can be
made by sorting the last column

• And that every character in the last column
precedes the character in the first column

BWT

• The first characters of each entry of the
BWT matrix are identical to the strings in
the suffix array

• Followed by the rest of the string

• Therefore, we can do a binary search in the
BWT matrix to find the pattern

I M I S S I S S I P P

I P P I M I S S I S S

I S S I P P I M I S S

I S S I S S I P P I M

M I S S I S S I P P I

P I M I S S I S S I P

P P I M I S S I S S I

S I P P I M I S S I S

S I S S I P P I M I S

S S I P P I M I S S I

S S I S S I P P I M I

Last column taken and used as basis for compression

10 I

7 IPPI

4 ISSIPPI

1 ISSISSIPPI

0 MISSISSIPPI

9 PI

8 PPI

6 SIPPI

3 SISSIPPI

5 SSIPPI

2 SSISSIPPI

Suppose we are search for the pattern ‘SIP’
Oh look found it in two

BWT search

• The BWT matrix will be bigger than the
Suffix array

• But fortunately, there is a way to build up
any line of the sorted matrix in linear time

• Using just the last line (and a couple of
easily precomputed tables)

int sum = 0, c[] = new int[256], p[] = new int[size];
byte out = new byte[size];

for(int i = 0; i < 256; i++) c[i] = 0;

for(int i = 0; i < size; i++)
{
 p[i] = c[block[i]];
 c[block[i]] = c[block[i]] + 1;
}

for(int ch = 0; ch < 256; ch++)
{
 sum = sum + c[ch];
 c[ch] = sum - c[ch];
}

int i = x;
for(int j = size - 1; j >=0; j--)
{
 out[j] = block[i];
 i = p[i] + c[block[i]];
}

Java code to find row x based on the last column block[]
out[] contains row x
p[] and c[] are two tables used to help rebuild the row

BWT search

• Therefore, using the last line of the matrix

• Which could well all ready exist if we’ve
compressed text

• The reconstruction algorithm and a binary
search

• We can find all occurrences of a pattern
very quickly

e.g. on disk

Page Description
Langauges

IN
FO

R
M

AT
IO

N

RASTER
PAGE

DESCRIPTION

A B C D

LOGICAL
STRUCTURE

A B

C D

LAYOUT

Page Description Language

• Holds a description of a ‘page’ in a form
that can be converted to a viewable image

• At this level everything is in a fixed position

• Dominated now by the Adobe Graphics
Model

• Used by PDF, PostScript and SVG

As well, as iOS and OS X

Early PDLs

• Before PostScript, PDLs were very basic

• Weren’t necessarily driving a raster device

• Were also tied to a specific machine

• And its specific features

• Such as units used for measurements

Technically, Warnock and Geschke had done very similar work at Xerox (Interpress) and at Evans and Sutherland to
what would become PostScript
Similar to the operations you get in a typical grpahics library on a computer
Programs driving a Linotype 202 would be incompatible with Monotype machines

Early PDLs

• Aimed at typesetters

• Mainly limited to text – set font, point size,
position, print text

• Perhaps some very basic straight line
drawing operations

Technically, Warnock and Geschke had done very similar work at Xerox (Interpress) and at
Evans and Sutherland to what would become PostScript
Similar to the operations you get in a typical grpahics library on a computer

Early Software Driving

• Software would often want to drive
multiple devices

• Produced an intermediate code, which
would be converted to the relevant format

• Often by a separate backend program

• But the intermediate codes would be
incompatible across software packages

Meaning you had lots of different backends

PostScript

• Developed by John Warnock and
Chuck Geschke in early 1980s

• PostScript took a different approach

• Not aimed at driving typesetters,
abstracted away from a specific device

• Text was just another mark on the page

• Based around the Adobe Graphics Model

Adobe Graphics Model

• At the heart of PDF, Postscript and SVG

• Separates the Graphics from the Rendering

• Application composes graphics on the page

• Once completed the entire page is
rendered for a specific device

• Crucially, abstracts the application from
device

Might be useful to know if its colour/black and white, what fonts are installed…
But that’s general metadata

Adobe Graphics Model

• Based around the idea of painting marks on
a blank page

• Any mark made obscures any previous
mark underneath it

• Although modern versions allow for
transparency

Adobe Graphics Model

• Painted Marks may be:

• Character shapes (glyphs)

• Geometric shapes or lines (paths)

• Sampled images (bitmaps)

Paths

• Constructed from a sequence of lines,
curved and points

• Then filled or stroked

Adobe Graphics Model

• Painted Marks may be in

• Colour

• Greyscale

• A repeating Pattern

• Smooth transition between colours
(gradient)

Adobe Graphics Model

• Painted marks may also be clipped to some
other shape

• Clipping defined by a path

• As they are placed on the page

• Once its on the page it can’t be removed

• Only covered up by new marks

User Space

• AGM defines User Space which is what the
application draws in

• Infinite, but clipped to the display…

• XY-coordinate system, y +ve upwards and x
+ve to the right

• Origin is (0,0) — i.e. the bottom-left

• Although the user can change this

AGM defines lots of interelated spaces…

User Space

• Also defines a fixed unit for User Space

• The point — 1/72 inch

• Unrelated to the capabilities of the device

• So is a floating point value

• Before being rendered, user space
coordinates are transformed into Device
Space

Device Space

• Device Space is specific to the device

• Varies from device to device

• Different origin, axes, units for
measurement

• Specifying graphics in User Space and
transforming to Device Space gives device
independence

Think about it — if you ask for a box to be 72 points high on a 72dpi machine its an inch,
On a 300dpi machine it’s ~0.25 inch high

GraphicsCHAPTER 4
138

If coordinates in a PDF file were specified in device space, the file would be
device-dependent and would appear differently on different devices. For exam-
ple, images specified in the typical device spaces of a 72-pixel-per-inch display
and a 600-dot-per-inch printer would differ in size by more than a factor of 8; an
8-inch line segment on the display would appear less than 1 inch long on the
printer. Figure 4.2 shows how the same graphics object, specified in device space,
can appear drastically different when rendered on different output devices.

FIGURE 4.2 Device space

User Space

To avoid the device-dependent effects of specifying objects in device space, PDF
defines a device-independent coordinate system that always bears the same rela-
tionship to the current page, regardless of the output device on which printing or
displaying will occur. This device-independent coordinate system is called user
space.

The user space coordinate system is initialized to a default state for each page of a
document. The CropBox entry in the page dictionary specifies the rectangle of
user space corresponding to the visible area of the intended output medium (dis-
play window or printed page). The positive x axis extends horizontally to the
right and the positive y axis vertically upward, as in standard mathematical prac-
tice (subject to alteration by the Rotate entry in the page dictionary). The length
of a unit along both the x and y axes is 1 ⁄72 inch. This coordinate system is called
default user space.

Device space for
72-dpi screen

Device space for
300-dpi printer

Example of difference in apparent size of object with same dimensions on different devices

Current Transformation Matrix

• Current Transformation Matrix (CTM)
specifies translation

• Allows the coordinates to be scaled,
translated, rotated and sheared

• Starts with a default CTM (maps User
Space to a specific Device Space)

• Could be more than just scaling

May have a different origin, axis direction etc as well

GraphicsCHAPTER 4
140

FIGURE 4.3 User space

Other Coordinate Spaces

In addition to device space and user space, PDF uses a variety of other coordinate
spaces for specialized purposes:

• The coordinates of text are specified in text space. The transformation from text
space to user space is defined by a text matrix in combination with several text-
related parameters in the graphics state (see Section 5.3.1, “Text-Positioning
Operators”).

• Character glyphs in a font are defined in glyph space (see Section 5.1.3, “Glyph
Positioning and Metrics”). The transformation from glyph space to text space
is defined by the font matrix. For most types of font, this matrix is predefined
to map 1000 units of glyph space to 1 unit of text space; for Type 3 fonts, the
font matrix is given explicitly in the font dictionary (see Section 5.5.4, “Type 3
Fonts”).

User space

Device space for
72-dpi screen

Device space for
300-dpi printer

CTM

