
Text Search
Steven R. Bagley

Introduction

• Briefly look at how we might search for a
string within a piece of text

• Good illustration of how to write good
text processing algorithms

• That are efficient…

Text tends to be long… so don’t really want to execute an O(n^2) algorithm

String Search

• Definitions

• The pattern — string to search for

• The text — the text we want to search

• Problem

• Does pattern occurs inside text

Will use these throughout the lecture

Naive String Search

• Easy to generate simple algorithm

• Align pattern with the beginning of text

• Compare the first character of pattern with
the corresponding character in text

H e l l o W o r l d

H e l l o

Naive String Search

• Easy to generate simple algorithm

• Align pattern with the beginning of text

• Compare the first character of pattern with
the corresponding character in text

• Then…

If they match

• Compare the next character of the pattern
with the corresponding character of text

• And repeat…

• If we reach the end of pattern then we’ve
found pattern in text

• So can stop and return position…

• Until no match…

H e l l o W o r l d

H e l l o

But what if they don’t match?
Need a different pattern

H e l l o W o r l d

H e l l o

But what if they don’t match?
Need a different pattern

H e l l o W o r l d

H e l l o

But what if they don’t match?
Need a different pattern

H e l l o W o r l d

H e l l o

But what if they don’t match?
Need a different pattern

H e l l o W o r l d

H e l l o

But what if they don’t match?
Need a different pattern

H e l l o W o r l d

H e l l o

But what if they don’t match?
Need a different pattern

H e l l o W o r l d

W o r l d

H e l l o W o r l d

W o r l d

If they don’t match

• Slide pattern one character along text

• Compare the first character of pattern with
corresponding character in text

• If they match…

• If they don’t match

• Until…

So character 0 of pattern aligns with character 1 of text

H e l l o W o r l d

W o r l d

H e l l o W o r l d

W o r l d

H e l l o W o r l d

W o r l d

H e l l o W o r l d

W o r l d

H e l l o W o r l d

W o r l d

H e l l o W o r l d

W o r l d

H e l l o W o r l d

W o r l d

Finally we get a match
So can return true

H e l l o W o r l d

W o r l d

Finally we get a match
So can return true

H e l l o W o r l d

W o r l d

Finally we get a match
So can return true

H e l l o W o r l d

W o r l d

Finally we get a match
So can return true

H e l l o W o r l d

W o r l d

Finally we get a match
So can return true

H e l l o W o r l d

W o r l d

Finally we get a match
So can return true

End Search

• End case is when it is no longer possible to
slide pattern any further along text

• Will happen when the end of pattern aligns
with the end of text

• In this case, we’ve not found pattern so we
can report failure

H e l l o W o r l d

F r e d

Not matched and have reached the end of text
So string not in there

Naive String Search

• Algorithm works

• Equivalent found in C and Java libraries

• Problem is its slow

• Worst case

• Has to compare every letter of pattern

• In every alignment with text

strstr/String.matches/String.indexOf(String s)

Naive String Search

• Worst case has O(nm) complexity

• Think about trying to find aab in aaaaaaab

• Fortunately, with real-world patterns and
text its usable

• But can we do any better?

n = length of text
m = length of pattern

Slow…

• The problem with this algorithm is that if a
match fails

• It always slides the match on by one
character

• If we could find a way to slide by more than
one character we could reduce the number
of comparisons

Sliding…

• Can’t just slide an arbitrary number of
characters along

• Or we might skip the match…

• Can only skip characters when we know it
is safe to do so…

Boyer-Moore

• One algorithm that does this is the Boyer-
Moore Algorithm

• Sublinear algorithm

• Basic idea is that more information is
obtained by scanning pattern from right to
left than left to right

Developed in the 1970s by Robert Boyer and J. Strother Moore.
Read their paper -- the material in it is examinable!

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Rather than scanning like this

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Scanning like this helps us enormously…

Observations

• Boyer-Moore made several observations
about possible mismatchs

• These observations enable us to slide
pattern ahead more than one character at a
time

Observation One

• If the mismatching char in text, does not occur
in pattern:

• Then we know there’s no possibility of pattern
matching at 0, 1, 2, …, length(pattern)

• Since this would require the character to be
part of pattern

• Can slide pattern down length(pattern) chars

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Observation Two

• More generally, even if char does occur in
pattern

• We can still slide pattern so that the char
aligns with the rightmost occurrence of
char in pattern

• If we slide it any less, then it still won’t be a
match…

char is the mismatching char in text

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Okay, found a character that matches, step back to test the previous character

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Okay, found a character that matches, step back to test the previous character

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Okay, found a character that matches, step back to test the previous character

Observation 3a

• Third observation they made takes place
when a character is matched

• Continue backing up until we match all of
pattern — and so have found it

• Or a mismatch occurs after matching m
characters…

Observation 3a

• Using the same reasoning as before, we can
obtain a value k to slide pattern

• If the right-most char is to the right of the
mismatch, then we’d have to slide the
pattern backwards to align it

• This is worthless, so…

• In this case, k = 1

k is based on the rightmost occurence of char in pattern as before

Observation 3a

• On the other hand, if it is to the left of the
mismatch, then k = delta1 - m

• In either case, we can slide pattern down k
characters

• And continue from the end of pattern again

delta is the distance from the end of pattern of the rightmost occurence
m is the number of characters matched

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Okay, found a character that matches, step back to test the previous character

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Okay, found a character that matches, step back to test the previous character

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Okay, found a character that matches, step back to test the previous character

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Okay, found a character that matches, step back to test the previous character

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Okay, found a character that matches, step back to test the previous character

Observation 3b

• But we can do better than that…

• We know that the next m characters of
text match the final m characters of pattern

• Call this subpat

• Also know that this occurrence of subpat is
preceded by char

Observation 3b

• Roughly speaking…

• Slide pattern down some so the discovered
subpat is aligned by the rightmost
occurrence of subpat in pattern not
preceded by char

• Must allow the right most plausible
reoccurrence of subpat to fall of the left
end of pattern

Observation 3b

• Define a function delta2(j) that gives the
right-most occurrence of subpat (between j
and the end of pattern)

• That is not preceded with the character at j

Observation 3

• In the case, where we have matched m
characters we want to slide either

• 1 character

• delta1 characters

• delta2(j) characters

• Just chose the maximum of the three…

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Okay, found a character that matches, step back to test the previous character

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Look we’ve matched the string

W H I C H F I N A L L Y H A L T S , A T T H A T P O I N T

A T T H A T

Look we’ve matched the string

Observations

• These observations massively reduced the
number of comparisons we do

• In this example, we only make 14 references
to text

• Seven of which were verifying the final
match…

Preprocessing

• However, this doesn’t take into account
how to find delta1 or delta2

• Searching for these each time would slow
the program down

• Can do this by preprocessing pattern

• And building up two lookup tables

Delta1 Lookup Table

• The first LUT maps characters to amount
to slide pattern

• Need one entry for each possible character

• 256 entries for 8-bit chars

Delta1 Lookup Table

• If char is in pattern

• length(pattern) - j, where j is the
index of the right-most occurrence of
char

• Else

• length(pattern)

Delta2 Lookup Table

• This table maps integer positions in pattern
to the distance we can slide pattern from
Observation 3b

• There will be length(pattern) entries

• Not as easy to consturct as delta1

Boyer-Moore algorithm
 stringlen = length of string
 i = patlen - 1

top: if(i > stringlen) return false
 j = patlen - 1

loop: if(j == -1) return i + 1
 if(string[j] == pat[j])
 {
 j = j - 1
 i = i - 1
 goto loop
 }
 i = i + max(delta1[string[i]], delta2[j])
 goto topl

In pseudo code
Dreaded goto…

Internationalization

• This algorithm works fine for Unicode too

• But the size of delta1 will grow

• For 16-bit, characters would be 65536
entries, instead of 256

• Interestingly, you can run it as 8-bits on
UTF-8 strings because they are self-syncing

Boyer-Moore

• Gold standard in string search

• Everything else is compared to it

• But there are alternatives

BWT and Suffix Arrays

• Another approach makes use of the
Burrows-Wheeler Transform

• Easier to understand by consider a related
approach Suffix Arrays first

Suffix Array

• If we take text, we can build an array of
suffixes from it

• Suffix is a substring of text from i..length(text)

• Where 0 <= i < length(text)

• This will give us an array of length(text)
suffixes

0 ORANGE

1 RANGE

2 ANGE

3 NGE

4 GE

5 E

All possible suffixes of orange

Suffix Array

• What’s the point of this?

• It’s effectively the same as we were doing in
our naive search algorithm

• If pattern is in the string, then at least one
of the arrays will start with pattern

• If we sort the suffix array, then we can use
a binary search to find the pattern

0 ORANGE

1 RANGE

2 ANGE

3 NGE

4 GE

5 E

All possible suffixes of orange
Suppose we are looking for the string GE in ORANGE
suffix 4 begins GE

2 ANGE

5 E

4 GE

3 NGE

0 ORANGE

1 RANGE

All possible suffixes of orange
Suppose we are looking for the string GE in ORANGE
suffix 4 begins GE

Suffix Arrays

• Binary search on a suffix array will find the
string in O(m log n) time

• But requires us to build up the array of
suffixes

• However, there’s a relationship between the
Burrows-Wheeler Transform and Suffix
arrays

m = length of pattern
n = length of text
Think about the string we looked at before

