
Text
Steven R. Bagley

Introduction

• How do we get a computer to understand
text?

• Unusual question to ask…

• After all, been using String and char for ages

• But a computer has no notion of text…

Binary Encoding

• Computer only understands binary

• For it to process text, we must encode the
characters in binary

• Doesn’t really matter how you do it

• Providing your consistent

• And don’t need to exchange it with other
computers/software

History

• Interesting to look back at the history of
characters

• Helps us understand why some things are
done in certain ways

• Also see how thinking about your encoding
can make it much simpler to write software

• Particularly about how bits are used…

e.g. line endings…

Teleprinter

• Computers originally output to teleprinters

• Teleprinter is basically an electromechanical
typewriter

• Where the key presses could be encoded
and sent over a wire to another teletype(s)

• Which would also type the message

• Or stored on paper tape…

A British Creed & Company Teleprinter No. 7

Teletype Model 33 ASR

Teleprinter

• A computer could generate the same
encoding

• Causing the teleprinter to print out…

• Of course, the computer also had to follow
the same rules as a teleprinter when
generating its output

Either over a wire or on paper tape
Carriage returns/Line feeds etc…

CR/LF

• Send codes to move to the next line

• Like a typewriter, this was done by sending
a Carriage Return (CR)

• This returned the carriage to the beginning
of the line

• Followed by a line feed (LF) to move to the
next line

Line ending

• Actually, it had to send several CR

• Mechanical process slower than data
transmission

• Hence, CR CR CR LF would be sent

• Eventually, reduced to CRLF

• To this day, on DOS/Windows systems…

No buffers on the system

Line Endings

• If CRLF is a line ending, what does a CR or
LF on its own mean?

• Multics reduced this to just an LF to avoid
confusion

• Device driver converted it as necessary

• Other systems used just CR for similar
reasons

Multics is the precursor to UNIX

Baudot Code

• Early Teleprinters used
the Baudot Code

• Developed by Emile
Baudot in 1874

• 5-bit binary code

Baudot Code

• 5-bits, gives us 25 or 32 codes

• Enough for all 26 letters

• Code 0 is left unused

• Five spaces left over…

00 08 10 E 18 A

01 T 09 L 11 Z 19 W

02 0A R 12 D 1A J

03 O 0B G 13 B 1B

04 0C I 14 S 1C U

05 H 0D P 15 Y 1D Q

06 N 0E C 16 F 1E K

07 M 0F V 17 X 1F

Position zero unused
Remeber only 5 bits used!

Baudot Code

• Some of the unused codes used for control
codes…

• Carriage Return, Line Feed, Spaces

• But what about numbers or punctuation?

Shift Code

• Makes use of a ‘shift-code’…

• Certain values shifts the understanding of
the other values

• Figures shift switches the code to a different
mode

• Letters shift switches it back to letters

00 08 LINE
FEED 10 E 18 A

01 T 09 L 11 Z 19 W

02 CARRIAGE
RETURN 0A R 12 D 1A J

03 O 0B G 13 B 1B FIGURE
SHIFT

04 SPACE 0C I 14 S 1C U

05 H 0D P 15 Y 1D Q

06 N 0E C 16 F 1E K

07 M 0F V 17 X 1F LETTERS
SHIFT

LETTER CASE
Position zero unused

00 08 LINE
FEED 10 3 18 -

01 5 09) 11 + 19 2

02 CARRIAGE
RETURN 0A 4 12

WHO
ARE
YOU

1A BELL

03 9 0B & 13 ? 1B FIGURE
SHIFT

04 SPACE 0C 8 14 . 1C 7

05 # 0D 0 15 6 1D 1

06 , 0E : 16 $ 1E (

07 . 0F = 17 / 1F LETTERS
SHIFT

FIGURE CASE
Position zero unused
Explain how we can write a message in Baudot code
Use whiteboard

Observations

• Need to know what has gone before to
understand the next character

• No lower case…

• Stunt characters (CR,LF, SHIFTs) never
change position

• No discernible order to the code…

• Makes processing it hard

at least what mode we are in (show how this can go wrong by decoding the message we’ve
written twice).

e.g. convert character to integer…

Other Character Sets

• IBM used EBCDIC until 1981 and the PC

• 8-bit code, based on Binary Coded Decimal

• Lots of others about as well

• All supported a different set of characters

• Needed a standardized set

• Enter ASCII in the 1960s

Although took till the eighties to really catch on…

ASCII

• 7-bit code — 127 characters

• Decided against using a shift character and
6-bits

• 7-bit saved space on eight-bits

• Lack of shift key made transmission more
reliable

ASCII

• Took over two years to decide what
characters to encode…

• A lot more characters encoded —
including lower case

• A very discernible order to the layout as
well…

Go through some of the ordered parts

ASCII order

• Contiguous control codes, letters and
numbers…

• Control codes grouped at the low end

• In a sortable order, so separator characters
before letters/numbers

• So can sort text purely on the ASCII code
numbers

Well lower-case will come after upper-case

ASCII order

• Punctuation matches the numbers in the
next column (similar to that found on
typewriter keyboards)

• Upper-case and lower-case are precisely
one bit different

• Start position of alphabet chosen to match
a British standard…

Makes it easy to change case (and 1/7th of bit errors during transmission won’t make the
message unintelligble).

ASCII limitations

• Only encodes 127 characters…

• US centric, e.g. no encoding for a £ symbol

• Often used in an extended 8-bit

• But these extensions aren’t standard

• ISO 8859 defines several different ones for
different areas…

e.g. left right double quotes are 210,211 in Mac Roman encoding, but this O grave or O acute
in WinAnsi

Unicode

• Need a character set with a fixed position
for every character

• Including international character sets other
than the Latin Alphabet

• Unicode was designed as such a Universal
Character System

• Dates back to the late-1980s

Unicode

• Aimed to be able to encode the union of
all characters used in 1988

• More characters than could fit in 8-bits

• Originally 16-bit, now 32-bit characters

• But will only go up U+10FFFF

• Often called wide characters

That’s character with hex code 0x10FFFF
Modern OSes and Systems tend to be unicode
NT et al are 16bitUnicode internally
Others tend to be UTF8

Unicode

• Defined in terms of 17 Code Planes (0-16)

• Not all used…

• Plane 0 is the Basic Multilingual Plane

• Other planes define CJK ideographs,
historic scripts etc.

Unicode

• Kept the first 127 chars identical to ASCII

• The next 128 are roughly similar to
common usage

Multibyte

• Multibyte characters are subject to endian
issues like any other multibyte word

• Unicode provides a way to identify the
order using a special character

• The Byte-Order Marker (BOM) U+FEFF

• The inverse (U+FFFE) isn’t a legal character

• Used as the first character in the stream

XML spec shows how to recover the byte order from the first few bytes whethere it is there or
not (due to a known opening sequence).

Unicode

• Multibyte nature means it takes up more
space than ASCII

• Yet for latin text, the code points are
identical — lots of zero bytes

• Wouldn’t it be great if we only had to use
multibyte characters when necessary

UTF

• UCS Transformation Format aims to do just
that

• Variable length byte sequences

• Aims to be on average shorter than 16-bit
chars

• But for some characters will be longer

UTF-1

• Uses a modulo 190 based system

• Characters U+0000 – U+009F encoded as is

• Characters from U+00A0 processed
through a set of rules

UTF-1

Show how to encode the € symbol (U+20AC)
y = 0x1FAC
y / 0xBE = 0x2A
y % 0xBE = 0x80 T(0x80) = C2

UTF-1
Code Point Encoding

x < U+009F x

U+00A0 <= x <= U+00FF
A0
x

U+0100 <= x <= U+4015
y = (x - 0x100)

A1 + y / 0xBE
T(y % 0xBE)

U+4016 <= x < U+38E2D
y = x - 0x4016

F6 + y / 0xBE2
T(y / BE % BE)
T(y % BE)

… …

Show how to encode the € symbol (U+20AC)
y = 0x1FAC
y / 0xBE = 0x2A
y % 0xBE = 0x80 T(0x80) = C2

UTF-1
Code Point Encoding

x < U+009F x

U+00A0 <= x <= U+00FF
A0
x

U+0100 <= x <= U+4015
y = (x - 0x100)

A1 + y / 0xBE
T(y % 0xBE)

U+4016 <= x < U+38E2D
y = x - 0x4016

F6 + y / 0xBE2
T(y / BE % BE)
T(y % BE)

… …

Show how to encode the € symbol (U+20AC)
y = 0x1FAC
y / 0xBE = 0x2A
y % 0xBE = 0x80 T(0x80) = C2

UTF-1
Code Point Encoding

x < U+009F x

U+00A0 <= x <= U+00FF
A0
x

U+0100 <= x <= U+4015
y = (x - 0x100)

A1 + y / 0xBE
T(y % 0xBE)

U+4016 <= x < U+38E2D
y = x - 0x4016

F6 + y / 0xBE2
T(y / BE % BE)
T(y % BE)

… …

Show how to encode the € symbol (U+20AC)
y = 0x1FAC
y / 0xBE = 0x2A
y % 0xBE = 0x80 T(0x80) = C2

UTF-1
Code Point Encoding

x < U+009F x

U+00A0 <= x <= U+00FF
A0
x

U+0100 <= x <= U+4015
y = (x - 0x100)

A1 + y / 0xBE
T(y % 0xBE)

U+4016 <= x < U+38E2D
y = x - 0x4016

F6 + y / 0xBE2
T(y / BE % BE)
T(y % BE)

… …

Show how to encode the € symbol (U+20AC)
y = 0x1FAC
y / 0xBE = 0x2A
y % 0xBE = 0x80 T(0x80) = C2

UTF-1
Code Point Encoding

x < U+009F x

U+00A0 <= x <= U+00FF
A0
x

U+0100 <= x <= U+4015
y = (x - 0x100)

A1 + y / 0xBE
T(y % 0xBE)

U+4016 <= x < U+38E2D
y = x - 0x4016

F6 + y / 0xBE2
T(y / BE % BE)
T(y % BE)

… …

Show how to encode the € symbol (U+20AC)
y = 0x1FAC
y / 0xBE = 0x2A
y % 0xBE = 0x80 T(0x80) = C2

UTF-1
Code Point Encoding

x < U+009F x

U+00A0 <= x <= U+00FF
A0
x

U+0100 <= x <= U+4015
y = (x - 0x100)

A1 + y / 0xBE
T(y % 0xBE)

U+4016 <= x < U+38E2D
y = x - 0x4016

F6 + y / 0xBE2
T(y / BE % BE)
T(y % BE)

… …

Show how to encode the € symbol (U+20AC)
y = 0x1FAC
y / 0xBE = 0x2A
y % 0xBE = 0x80 T(0x80) = C2

UTF-1
T(z) defined:

z T(z)

0x00—0x5D z + 0x21

0x5E—0xBD z + 0x42

0xBE—0xDE z - 0xBE

0xBF–0xFF z - 0x60

UTF-1

• Problem with UTF-1 is that it is not self-
syncing

• You need to know where you are in the
stream to understand a byte

• Because it uses all byte values as both
single characters and parts of multibyte
characters

UTF-8

• Designed by Ken Thompson and Rob Pike
over dinner on the back of an envelope

• Aimed to solve the problems of UTF-1

• Self-syncing

• Type of each byte uniquely decodable

• Varies in length from 1-4 bytes

Yes really see -- http://www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txtOr
Not quite as compact as UTF-1

UTF-8

x are bits from the original code points
Show how to encode the € symbol (U+20AC)

UTF-8

Bits Last Code
Point Byte 1 Byte 2 Byte 3 Byte 4

7 U+007F 0xxxxxxx

11 U+07FF 110xxxxx 10xxxxxx

16 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

21 U+1FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

x are bits from the original code points
Show how to encode the € symbol (U+20AC)

UTF-8

Bits Last Code
Point Byte 1 Byte 2 Byte 3 Byte 4

7 U+007F 0xxxxxxx

11 U+07FF 110xxxxx 10xxxxxx

16 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

21 U+1FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

x are bits from the original code points
Show how to encode the € symbol (U+20AC)

UTF-8

Bits Last Code
Point Byte 1 Byte 2 Byte 3 Byte 4

7 U+007F 0xxxxxxx

11 U+07FF 110xxxxx 10xxxxxx

16 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

21 U+1FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

x are bits from the original code points
Show how to encode the € symbol (U+20AC)

UTF-8

Bits Last Code
Point Byte 1 Byte 2 Byte 3 Byte 4

7 U+007F 0xxxxxxx

11 U+07FF 110xxxxx 10xxxxxx

16 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

21 U+1FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

x are bits from the original code points
Show how to encode the € symbol (U+20AC)

UTF-8

Bits Last Code
Point Byte 1 Byte 2 Byte 3 Byte 4

7 U+007F 0xxxxxxx

11 U+07FF 110xxxxx 10xxxxxx

16 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

21 U+1FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

x are bits from the original code points
Show how to encode the € symbol (U+20AC)

UTF-8 self syncing

• Top two bits tell us the type of byte

• Bit 7 is 0, a single byte character

• Bit 6-7 is 11, start of a MBCS, a leading byte

• Bit 6-7 is 10, part of a MBCS, a continuing
byte

• Can easily find our place in the stream for
decoding…

MBCS Multibyte character

Conclusion

• Text requires us to define a mapping to
store it

• But how we define that mapping affects
how the software must work

• By thinking carefully about the mapping, we
can make it much easier to write software

Saw this with ASCII, and with UTF-8

